

### Available Online at http://journalijcar.org

International Journal of Current Advanced Research Vol 5, Issue 10, pp 1327-1332, October 2016

## International Journal of Current Advanced Research

ISSN: 2319 - 6475

# RESEARCH ARTICLE

## ON $\hat{\hat{g}}$ -CLOSED SETS IN BITOPOLOGICAL SPACES

### **Manoj Garg**

Department of Mathematics, Nehru (P.G.) College, Chhibramau, Kannauj (U.P.)

#### ARTICLE INFO

#### Article History:

Received 4<sup>th</sup> July, 2016 Received in revised form 15<sup>th</sup>August, 2016 Accepted 18<sup>th</sup> September, 2016 Published online 28<sup>th</sup> October, 2016

#### Key words:

irresoluteness.

(i, j)- $\hat{\hat{g}}$  -closed sets; (i, j)- $\hat{T}_{1/2}$  spaces; (i, j)- $\hat{T}_{f}$  -spaces;  $\hat{\hat{D}}$  (i, j)-continuity;  $\hat{\hat{D}}$  (i, j)-

#### ABSTRACT

In this paper we introduce  $\hat{g}$ -closed sets [12] in bitopological spaces. Properties of these sets are investigated and we introduce two new bitopological spaces (i, j)- $\hat{\hat{T}}_{1/2}$  spaces and (i, j)- $\hat{T}_f$  spaces as applications. Further we introduce and study  $\hat{g}$ -continuous maps [12] and  $\hat{g}$ -irresolute maps [12] in bitopological spaces.

© Copy Right, Research Alert, 2016, Academic Journals. All rights reserved.

### **INTRODUCTION**

A triple  $(X, \tau_1, \tau_2)$  where X is non empty set and  $\tau_1$  and  $\tau_2$  are topologies on X is called a bitopological space. Kelly [3] initiated the study of such spaces in 1963. Fukutaka [6] introduced the concept of g-closed sets [2] in bitopological spaces and after that several authors turned their attention towards generalizations of various concepts of topology by considering bitopological spaces. Recently Manoj *et al* [12] introduced and studied the concepts of  $\hat{g}$ -closed sets and  $\hat{g}$ -continuity in topological spaces.

In the present paper we introduce the concept of  $\hat{g}$ -closed sets [12] in bitopological spaces and then investigate some of their properties. We also define and study new types of spaces namely  $\hat{T}_{1/2}$ -spaces [12] and  $\hat{T}_f$ -spaces [12] in bitopological spaces. We further introduce new class of maps called  $\hat{g}$ -continuous maps and  $\hat{g}$ -irresolute maps in bitopological spaces and investigate their properties.

#### **Preliminaries**

If A is a subset of X with topology  $\tau$ , then the closure of A is denoted by  $\tau$ -cl(A) or cl(A), the interior of A is denoted by  $\tau$ -int(A) or int(A) and the complement of A in X is denoted by  $A^c$ .

**Definition 2.01**: (i) A subset A of a topological space  $(X, \tau)$  is called semi-open [1] (resp. regular open [8], pre-open [2]) if  $A \subseteq cl(int(A))$  (resp. A=int(cl(A)),  $A\subseteq int(cl(A))$ ). (ii) A subset A of a topological space  $(X, \tau)$  is called a

generalized closed [2] (resp. sg-closed [15],  $\hat{g}$  -closed [12]) set if  $cl(A) \subseteq U$  (resp.  $scl(A) \subseteq U$ ,  $cl(A) \subseteq U$ ) whenever  $A \subseteq U$  and U is open (resp. semi-open, sg-open) in X.

**Definition 2.02:** The intersection of all pre closed sets containing A is called the pre closure of A and denoted by  $\tau$ -pcl(A) or pcl(A).

Throughout this paper X and Y always represent non-empty bitopological spaces  $(X,\,\tau_1,\,\tau_2)$  and  $(Y,\,\sigma_1,\,\sigma_2)$  on which no separation axioms are assumed unless otherwise explicitly mentioned and integers  $i,\,j,\,k\in\{1,2\}.$  For a subset A of X,  $\tau_i$ -cl(A) (resp.  $\tau_i$ -int(A),  $\tau_i$ -pcl(A)) denote the closure (resp. interior , pre closure) of A w.r.t. topology  $\tau_i$ . We denote the family of all semi generalized open (briefly sg-open) subsets of X w.r.t. the topology  $\tau_i$  by SGO(X,  $\tau_i)$  and the family of all  $\tau_j$ -closed sets is denoted by  $F_j$ . By (i, j) we mean the pair of topologies  $(\tau_I,\,\tau_j).$ 

**Definition 2.03:** A subset A of a bitopological space  $(X, \tau_1, \tau_2)$  is called :

- (i) (i, j)-g-closed [6] if  $\tau_j$ -cl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U  $\in$   $\tau_i$ .
- (ii) (i, j)-rg-closed [4] if  $\tau_j$ -cl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is regular open in  $\tau_\iota$
- (iii) (i, j)-gpr-closed [13] if  $\tau_j\text{-pcl}(A)\subseteq U$  whenever  $A\subseteq U$  and U is regular open in  $\tau_\iota$
- (iv) (i, j)wg-closed [10] if  $\tau_j$ -cl( $\tau_\iota$ -int(A))  $\subseteq U$  whenever A  $\subseteq U$  and  $U \in \tau_i$ .
- $\label{eq:tau_sign} \begin{array}{ll} \text{(v)} & \text{(i, j)-$\omega$-closed [13] if $\tau_j$-cl (A)} \subseteq U \text{ whenever } A \subseteq U \\ & \text{and $U$ is semi open in $\tau_i$.} \end{array}$

- (vi) (i, j)-g\*-closed [16] if  $\tau_j$ -cl(A)  $\subseteq U$  whenever  $A \subseteq U$  and U is generalized open in  $\tau_i$ .
- (vii) (i, j)-\*g-closed [17] if  $\tau_j$ -cl(A)  $\subseteq U$  whenever  $A \subseteq U$  and U is  $\hat{g}$  -open in  $\tau_i$ .

The family of all (i, j)-g-closed (resp. (i, j)-rg-closed, (i, j)-gpr-closed, (i, j)-Wg-closed, (i, j)- $\omega$ -closed, (i, j)-g\*-closed, (i, j)-\*g-closed) subsets of a bitopological space  $(X, \tau_1, \tau_2)$  is denoted by D(i, j) (resp.  $D_r(i, j)$ ,  $\zeta(i, j)$ , W(i, j), C(i, j),  $D^*(i, j)$  and \*D(i, j)).

**Definition 2.04**: (i) A bitopological space  $(X, \tau_1, \tau_2)$  is said to be (i, j)- $T_{1/2}$  [6] (resp. (i, j)- $T_{1/2}$  [16], (i, j)- $T_{1/2}$  [16]) if every (i, j)-g-closed (resp. (i, j)-g\*-closed, (i, j)-g-closed) set is  $\tau_j$ -closed (resp.  $\tau_i$ -closed, (i, j)-g\*-closed).

A bitopological space  $(X, \tau_1, \tau_2)$  is said to be strongly pairwise  $T_{1/2}$  [6] (resp. strongly pairwise  $T^*_{1/2}$  [16]) space if it is (1, 2)- $T_{1/2}$  and (2, 1)- $T_{1/2}$  (resp. (1, 2)- $T^*_{1/2}$  and (2, 1)- $T^*_{1/2}$ ) space.

**Definition 2.05**: A map  $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  is called

- (i)  $\tau_{i}$ - $\sigma_{k}$ -continuous [5] if  $f^{-1}(V) \in \tau_{i}$  for every  $V \in \sigma_{k}$ .
- (ii) D (i, j)- $\sigma_k$ -continuous [5] (resp.  $D_r$  (i, j)- $\sigma_k$ -continuous [4],  $\zeta$  (i, j)- $\sigma_k$ -continuous [13] W (i, j)- $\sigma_k$ -continuous [10], C (i, j)- $\sigma_k$ -continuous [13], D\* (i, j)- $\sigma_k$ -continuous [16] and \*D (i, j)- $\sigma_k$ -continuous [17]) if the inverse image of every  $\sigma_k$ -closed set is (i, j)-g-closed (resp. (i, j)-rg-closed, (i, j)-gpr-closed, (i, j)-Wg-closed, (i, j)- $\sigma_k$ -closed and (i, j)- $\sigma_k$ -closed) set in (X,  $\sigma_k$ ,  $\sigma_k$ )

**Definition 2.06:** A topological space  $(X, \tau)$  is called  $\hat{T}_{1/2}$  - space [12] (resp.  $\hat{T}_f$  -space [12]) if every  $\hat{g}$  -closed set (resp. g-closed set) is closed (resp.  $\hat{g}$  -closed).

# $(i, j) - \hat{\hat{g}}$ -Closed Sets

In this section we introduce the concepts of (i, j)- $\hat{\hat{g}}$  -closed sets in bitopological spaces.

**Definition 3.01:** A subset A of a bitopological space  $(X, \tau_1, \tau_2)$  is said to be an (i, j)- $\hat{\hat{g}}$ -closed set if  $\tau_j$ -cl $(A) \subseteq U$  whenever  $A \subseteq U$  and  $U \subseteq SGO(X, \tau_i)$ .

We denote the family of all (i, j)- $\hat{\hat{g}}$ -closed sets in (X,  $\tau_1, \tau_2$ ) by  $\hat{\hat{D}}$  (i, j).

**Remark 3.02:** By setting  $\tau_1 = \tau_2$  in definition (3.01), an (i, j)- $\hat{\hat{g}}$  -closed set is  $\hat{\hat{g}}$  -closed set.

**Proposition 3.03:** If A is  $\tau_j$ -closed subset of  $(X,\,\tau_1,\,\tau_2)$ , then A is  $(i,\,j)$ -  $\hat{\hat{g}}$ -closed.

The converse of the above proposition is not true as seen from the following example. **Example 3.04:**  $X = \{a, b, c\}, \tau_1 = \{\phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}, X\}$  and  $\tau_2 = \{\phi, \{a, b\}, X\}$  then the subset  $\{a, b\}$  is (1, 2)- $\hat{\hat{g}}$  -closed but not  $\tau_2$ -closed.

**Proposition 3.05:** In a bitopological space every an (i, j)- $\hat{\hat{g}}$ -closed set is (i) (i, j)-g-closed set (ii) (i, j)-rg-closed set (iii) (i, j)-gpr-closed set (iv) (i, j)- $\omega$ -closed set (v) (i, j)- $\omega$ -closed (vi) (i, j)- $\omega$ -closed set.

The following examples show that the reverse implications of the above proposition are not true.

**Example 3.06:** Let  $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b, c\}, X\}$  and  $\tau_2 = \{\phi, \{a\}, \{a, b\}, X\}$ . Then the subset  $\{a, b\}$  is (1, 2)-g-closed but not (1, 2)- $\hat{\hat{g}}$  -closed.

**Example 3.07:** Let  $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$  and  $\tau_2 = \{\phi, \{a\}, X\}$ . Then the subset  $\{a, b\}$  is (1, 2)-rg-closed but not (1, 2)- $\hat{\hat{g}}$  -closed.

**Example 3.08:** In example (3.04), the subset  $\{b, c\}$  is (1, 2)-gpr-closed but not (1, 2)- $\hat{\hat{g}}$ -closed.

*Example 3.09:* Let  $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$  and  $\tau_2 = \{\phi, \{a\}, \{b, c\}, X\}$ . Then the subset  $\{a, b\}$  is (2, 1)-ω-closed but not (2, 1)- $\hat{g}$  -closed.

**Example 310:** Let  $X = \{a, b, c\}$ ,  $\tau_1 = \{\phi, \{a\}, X\}$  and  $\tau_2 = \{\phi, \{b\}, X\}$ . Then the subset  $\{a, b\}$  is (1, 2)-Wg-closed but not (1, 2)- $\hat{\hat{g}}$  -closed.

**Example 3.11:** Let  $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$  and  $\tau_2 = \{\phi, \{c\}, \{a, c\}, X\}$ . Then the subset  $\{c\}$  is (1, 2)-\*g-closed but not (1, 2)- $\hat{\hat{g}}$ -closed.

**Remark 3.12:** The following examples show that (i, j)- $\hat{\hat{g}}$  -closed set and  $\tau_i$ -g-closed set are independent.

**Example 3.13:** In example (3.07), the subset  $\{b\}$  is not (1, 2)- $\hat{\hat{g}}$  -closed but it is  $\tau_2$ -g-closed.

**Example 3.14:** In example (3.04), the subset  $\{b, c\}$  is (2, 1)- $\hat{\hat{g}}$  -closed but not  $\tau_1$ -g-closed.

**Remark 3.15:** The following examples show that an (i, j)- $\hat{g}$  closed set and (i, j)-g\*-closed sets are independent as it can be seen from the following examples.

**Example 3.16:** In example (3.06), the subset  $\{a, c\}$  is (2, 1)- $\hat{\hat{g}}$ -closed but not (2, 1)- $\hat{\hat{g}}$  -closed.

**Example 3.17:** In example (3.11), the subset  $\{c\}$  is (1, 2)- $\hat{g}$ -closed but not (1, 2)-g\*-closed.

The following diagram summarizes the above discussions.



**Diagram (3.18)** 

Where  $A \rightarrow B$  (resp.  $A \longleftrightarrow B$ ) represents A implies B but not conversely (resp. A and B are independent).

**Proposition 3.19:** If A, B  $\in \hat{D}$  (i, j), then A  $\cup$  B is not necessarily belongs to  $\hat{\hat{D}}$  (i, j).

**Proof:** Since union of two sg-open sets is not necessarily sg-open so proof is obvious.

**Remark 3.20:** The intersection of two (i, j)- $\hat{\hat{g}}$ -closed sets need not be (i, j)- $\hat{\hat{g}}$ -closed set as seen from the following example.

**Example 3.21:** Let  $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b, c\}, X\}$  and  $\tau_1 = \{\phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}, X\}$  then  $\{a, b\}$  and  $\{b, c\}$  are (2, 1)- $\hat{\hat{g}}$ -closed sets but their intersection  $\{b\}$  is (2, 1)- $\hat{\hat{g}}$ -closed set.

**Remark 3.22:** In a bitopological space  $(X, \tau_1, \tau_2)$ ,  $\hat{D}$  (1, 2) is generally not equal to  $\hat{D}$  (2, 1) as it can be seen from the following example.

*Example 3.23:* In example (3.09), {a} is (1, 2)- $\hat{g}$  -closed but not (2, 1)- $\hat{g}$  -closed and {c} is (2, 1)- $\hat{g}$  -closed but not (1, 2)- $\hat{g}$  -closed.

**Proposition 3.24:** If  $\tau_1 \subseteq \tau_2$  in  $(X, \tau_1, \tau_2)$ , then  $\hat{D}$   $(2, 1) \subseteq \hat{D}$  (1, 2).

The converse of the above proposition is not true as it can be seen from the following example.

**Example 3.25:** Let  $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$  and  $\tau_1 = \{\phi, \{b\}, \{a, c\}, X\}$ . Then  $\hat{\hat{D}}$   $(2, 1) \subseteq \hat{\hat{D}}$  (1, 2) but  $\tau_1$  is not contained in  $\tau_2$ .

**Proposition 3.26:** For each element x of  $(X, \tau_1, \tau_2)$ ,  $\{x\}$  is  $\tau_i$ -sg-closed or  $\{x\}^c$  is (i, j)- $\hat{\hat{g}}$  -closed.

**Proposition 3.27:** If A is (i, j)- $\hat{g}$ -closed then  $\tau_j$ -cl(A)-A contains no non-empty  $\tau_i$ -sg-closed set.

The converse of the above proposition is not true as it can be seen from the following example.

**Example 3.28:** Let  $X=\{a,b,c\}, \tau_1=\{\phi,\{a\},\{a,c\},X\}$  and  $\tau_2=\{\phi,,\{a,b\},X\}$ . If  $A=\{c\}$ , then  $\tau_2\text{-cl}(A)\text{-}A=\phi$  does not contain any non-empty  $\tau_1\text{-sg-closed}$  set but A is not a (1,2)- $\hat{\hat{g}}$ -closed.

**Proposition 3.29:** If A is (i, j)- $\hat{g}$  -closed set in  $(X, \tau_1, \tau_2)$  then A is  $\tau_i$ -closed iff  $\tau_i$ -cl(A) is  $\tau_i$ -sg-closed.

 $\label{eq:proof: Proof: Let A is $\tau_j$-closed then $\tau_j$-cl(A) = A i.e. $\tau_2$-cl(A)-A = $\phi$ and hence $\tau_j$-cl(A)-A is $\tau_i$-sg-closed. Conversely, let $\tau_j$-cl(A)-A is $\tau_i$-sg-closed, then by prop.(3.27) . $\tau_i$-cl(A)-A = $\phi$ , since A is $(i,j)$-$\hat{\hat{g}}$-closed so A is $\tau_i$-closed.$ 

**Proposition 3.30:** If A is an (i, j)- $\hat{g}$ -closed set of  $(X, \tau_1, \tau_2)$  such that  $A \subseteq B \subseteq \tau_j$ -cl(A) then B is also an (i, j)- $\hat{g}$ -closed set of  $(X, \tau_1, \tau_2)$ .

**Proposition 3.31:** Let  $A \subseteq Y \subseteq X$  and A is (i, j)- $\hat{\hat{g}}$ -closed in X, then A is (i, j)- $\hat{\hat{g}}$ -closed relative to Y.

**Theorem 3.32:** In a bitopological space  $(X, \tau_1, \tau_2)$ , SGO(X,  $\tau_I$ )  $\subseteq F_j$  (Family of all closed sets in  $\tau_j$ ) iff every subset of X is an (i,j)- $\hat{\hat{g}}$ -closed set.

 $\label{eq:proof: proof: for the proof: for the proof: for the proof of X such that $A\subseteq U$ where $U\in SGO(X,\,\tau_I)$. Then $\tau_j$-cl(A)$ $\subseteq \tau_j$-cl(U)$ = $U$ and hence $A$ is $(i,j)$-$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ -closed.

Conversely let every subset of X is (i, j)- $\hat{\hat{g}}$ -closed. Let  $U \in SGO(X, \tau_I)$ . Since U is (i, j)- $\hat{\hat{g}}$ -closed, we have  $\tau_j$ -cl(U)  $\subseteq U$ . So  $U \in F_j$  and hence  $SGO(X, \tau_I) \subseteq F_j$ .

(i, j)-
$$\hat{\hat{T}}_{1/2}$$
 -Spaces and (i, j)- $\hat{\hat{T}}_{f}$  -Spaces

In this section we introduce the following definitions.

**Definition 4.01:** A bitopological space  $(X, \tau_1, \tau_2)$  is said to be an (i, j)- $\hat{T}_{1/2}$  space if every (i, j)- $\hat{g}$ -closed set is  $\tau_i$ -closed.

**Definition 4.02:** A bitopological space  $(X, \tau_1, \tau_2)$  is said to be an (i, j)- $\hat{T}_f$  space if every (i, j)- g-closed set is (i, j)- $\hat{\hat{g}}$ -closed.

**Definition 4.03:** A bitopological space  $(X, \tau_1, \tau_2)$  is said to be an strongly pairwise- $\hat{\hat{T}}_{1/2}$  space if it is (1, 2)- $\hat{\hat{T}}_{1/2}$  space and (2, 1)- $\hat{\hat{T}}_{1/2}$  space.

**Proposition 4.04:** If  $(X, \tau_1, \tau_2)$  is (i, j)- $T_{1/2}$  space then it is an (i, j)- $\hat{T}_{1/2}$  space but not conversely.

Example 4.05: In example (3.09),  $(X, \tau_1, \tau_2)$  is  $(1, 2) - \hat{\hat{T}}_{1/2}$  space but not  $(1, 2) - \hat{T}_{1/2}$  space.

**Proposition 4.06:** If  $(X, \tau_1, \tau_2)$  is strongly pairwise  $T_{1/2}$ -space then it is strongly pairwise  $\hat{T}_{1/2}$ -space but not conversely.

**Example 4.07:** In example (3.07),  $(X, \tau_1, \tau_2)$  is strongly pairwise  $\hat{T}_{1/2}$ -space but not strongly pairwise  $T_{1/2}$ -space.

**Theorem 4.08:** A bitopological space  $(X, \tau_1, \tau_2)$  is an (i, j)- $\hat{T}_{1/2}$  space iff  $\{x\}$  is  $\tau_j$ -open or  $\tau_i$  -sg-closed for each  $x \in X$ .

**Proof:** Suppose that  $\{x\}$  is not  $\tau_i$ -sg-closed then  $\{x\}^c$  is (i, j)- $\hat{\hat{g}}$  -closed by proposition (3.26). Since  $(X, \tau_1, \tau_2)$  is an (i, j)- $\hat{T}_{1/2}$  space,  $\{x\}^c$  is  $\tau_j$ -closed i.e.  $\{x\}^c$  is  $\tau_j$ -open.

Conversely let F be an (i, j)- $\hat{\hat{g}}$  -closed set. By assumption  $\{x\}$  is  $\tau_j$ -open or  $\tau_i$ -sg-closed for any  $x \in \tau_j$ -cl(F).

Case I- Suppose  $\{x\}$  is  $\tau_j$ -open. Since  $\{x\} \cap F \quad \phi$  we have  $x \in F$ .

Case II- Suppose  $\{x\}$  is  $\tau_j$ -sg-closed. If  $x \notin F$  then  $\{x\} \subseteq \tau_j$ -cl(F)–F, which is a contradiction to proposition (3.29) so  $x \in F$ .

Thus in both cases we find that F is  $\tau_j$ -closed i.e.  $(X,\,\tau_1,\,\tau_2)$  is  $(i,\,j)$ -  $\hat{\hat{T}}_{1/2}$  space.

**Remark 4.09:** (i, j)- $\hat{T}_{1/2}$  space and (i, j)- $\hat{T}_f$  space are independent to each other as seen from the following examples..

**Example 4.10:** In example (3.07),  $(X, \tau_1, \tau_2)$  is (2, 1)- $\hat{T}_{1/2}$  space but not (2, 1)- $\hat{T}_f$  space.

**Example 4.11:** In example (3.04),  $(X, \tau_1, \tau_2)$  is (1, 2)- $\hat{T}_f$  space but not (1, 2)- $\hat{T}_{1/2}$  space.

**Proposition 4.12:** If  $(X, \tau_1, \tau_2)$  is (i, j)- $T_{1/2}$  space then it is (i, j)- $\hat{T}_f$  space but not conversely.

**Example 4.13:** In example (3.04),  $(X, \tau_1, \tau_2)$  is (1, 2)- $\hat{T}_f$  space but not (1, 2)- $T_{1/2}$  space.

**Proposition 4.14:** A bitopological space  $(X, \tau_1, \tau_2)$  is (i, j)- $T_{1/2}$  space iff it is both (i, j)- $\hat{T}_f$  space and (i, j)- $\hat{T}_{1/2}$  space.

**Remark 4.15:** In  $(X, \tau_1, \tau_2)$ , (i, j)-\* $T_{1/2}$  space is not necessarily (i, j)- $\hat{T}_f$  space as it can be seen from the following example. **Example 4.16:** In example (3.09),  $(X, \tau_1, \tau_2)$  is (1, 2)-\* $T_{1/2}$  space but not (1, 2)- $\hat{T}_f$  space.

**Proposition 4.17:** If  $(X, \tau_1, \tau_2)$  is (i, j)- $T^*_{1/2}$  space then it is (i, j)- $\hat{\hat{T}}_{1/2}$  space but not conversely.

**Example 4.18:** In example (3.07),  $(X, \tau_1, \tau_2)$  is (1, 2)- $\hat{\hat{T}}_{1/2}$  space but not (1, 2)- $T^*_{1/2}$  space.

**Proposition 4.19:** If  $(X, \tau_1, \tau_2)$  is strongly pairwise  $T^*_{1/2}$ -space then it is strongly pairwise  $\hat{\hat{T}}_{1/2}$ -space but not conversely.

*Example 4.20:* In example (3.07),  $(X, \tau_1, \tau_2)$  is strongly pairwise  $\hat{T}_{1/2}$ -space but not strongly pairwise  $T^*_{1/2}$ -space.

The following diagram summarizes the above discussions.



**Diagram** (4.21)

## $\hat{\hat{g}}$ -Continuous Maps

In this section we introduce  $\hat{\hat{g}}$  –continuous maps in bitopological spaces.

**Definition 5.01:** A map  $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$  is called  $\hat{\hat{D}}(i, j)$ - $\sigma_k$ -continuous if the inverse image of every  $\sigma_k$ -closed set is an (i, j)- $\hat{\hat{g}}$ -closed set.

**Proposition 5.02:** If  $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$  is  $\tau_j - \sigma_k$ -continuous then it is  $\hat{\hat{D}}(i, j) - \sigma_k$ -continuous but not conversely.

**Example 5.03:**  $X = \{a, b, c\}, \tau_1 = \{\phi, \{b\}, \{c\}, \{b c\}, \{a, c\}, X\}, \tau_2 = \{\phi, \{a, b\}, X\} \text{ and } Y = \{p, q\}, \sigma_1 = \{\phi, \{p\}, Y\}, \sigma_2 = \{\phi, \{q\}, Y\}. \text{ Define } f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \text{ by } f(a) = q, f(b) = p, f(c) = p. \text{ Then map } f \text{ is } (2, 1) - \hat{\hat{g}} - \sigma_2 \text{-continuous but not } \tau_1 - \sigma_2 \text{-continuous.}$ 

**Proposition 5.04:** If  $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$  is  $\hat{D}(i,j)\,\sigma_{k^-}$  continuous then it is (i)  $D(i,j)\!-\!\sigma_{k^-}$  continuous (ii)  $D_r(i,j)\!-\!\sigma_{k^-}$  continuous (iii)  $\zeta(i,j)\!-\!\sigma_{k^-}$  continuous (v)  $C(i,j)\!-\!\sigma_{k^-}$  continuous (v)  $W(i,j)\!-\!\sigma_{k^-}$  continuous (vi) \*D (i, j)- $\sigma_{k^-}$  continuous.

However the reverse implications of the above proposition are not true in general as it can be seen from the following examples.

**Example 5.05:** Let  $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}, \tau_2 = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\} \text{ and } Y = \{p, q\}, \sigma_1 = \{\phi, \{p\}, Y\}, \sigma_2 = \{\phi, \{q\}, Y\}. \text{ Define } f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \text{ by } f(a) = p, f(b) = p, f(c) = q. \text{ Then map } f \text{ is } D (1, 2)-\sigma_2\text{-continuous}$  continuous but not  $\hat{D}$  (1, 2)- $\sigma_2$ -continuous.

**Example 5.06**: Let  $X = \{a, b, c\} = Y, \tau_1 = \{\phi, \{a\}, \{a, c\}, X\}, \tau_2 = \{\phi\}, \{a, b\}, X\}$  and  $\sigma_1 = \{\phi, \{b\}, \{b, c\}, Y\}, \sigma_2 = \{\phi, \{a\}, \{a, b\}, \{a, c\}, Y\}$ . Define  $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  by f(a) = b, f(b) = c, f(c) = a. Then map f is  $D_r(1, 2)$ - $\sigma_2$ -continuous but not  $\hat{\hat{D}}(1, 2)$ - $\sigma_2$ -continuous.

**Example 5.07:** Let  $X = \{a, b, c\} = Y$ ,  $\tau_1 = \{\phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}, X\}$ ,  $\tau_2 = \{\phi\}$ ,  $\{a, b\}, X\}$  and  $\sigma_1 = \{\phi, \{a\}, \{a, b\}, Y\}$ ,  $\sigma_2 = \{\phi, \{a\}, \{b\}, \{a, b\}, Y\}$ . Define  $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  by f(a) = b, f(b) = c, f(c) = a. Then map f is  $\zeta(1, 2) - \sigma_1$ -continuous but not  $\hat{D}(1, 2) - \sigma_1$ -continuous.

**Example 5.08:** Let  $X = \{a, b, c\} = Y, \tau_1 = \{\phi, \{a\}, \{b, c\}, X\}, \tau_2 = \{\phi\}, \{a\}, \{a, b\}, X\}$  and  $\sigma_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, Y\}, \sigma_2 = \{\phi, \{a\}, \{a, b\}, \{a, c\}, Y\}.$  Define  $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  by f(a) = a, f(b) = c, f(c) = b. Then map f is C (1, 2)-

 $\sigma_2$ -continuous but not  $\hat{D}$  (1, 2)- $\sigma_2$ -continuous.

*Example 5.09:* Let  $X = \{a, b, c\} = Y, \tau_1 = \{\phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}, X\}, \tau_2 = \{\phi\}, \{a, b\}, X\}$  and  $\sigma_1 = \{\phi, \{b\}, \{b, c\}, Y\}, \sigma_2 = \{\phi, \{c\}, \{b, c\}, Y\}$ . Define  $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  by identity mapping. Then map f is  $W (1, 2) - \sigma_2$ -continuous but not  $\hat{D} (1, 2) - \sigma_2$ -continuous.

**Example 5.10:** Let  $X = \{a, b, c\} = Y, \tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, \tau_2 = \{\phi\}, \{c\}, \{a, c\}, X\}$  and  $\sigma_1 = \{\phi, \{c\}, \{b, c\}, Y\}, \sigma_2 = \{\phi, \{a\}, \{b\}, \{a, b\}, Y\}$ . Define  $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  by f(a) = c, f(b) = a, f(c) = b. Then map f is \*D(1, 2)- $\sigma_1$ -continuous but not  $\hat{\hat{D}}$  (1, 2)- $\sigma_1$ -continuous.

**Remark 5.11:**  $\hat{\hat{D}}$  (i, j)- $\sigma_k$ -continuous and D\* (i, j)- $\sigma_k$ -continuous are independent as it can be seen from the following examples.

**Example 5.12:** Let  $X = \{a, b, c\} = Y, \tau_1 = \{\phi, \{a\}, \{b, c\}, X\}, \tau_2 = \{\phi\}, \{a\}, \{a, b\}, X\}$  and  $\sigma_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, Y\}, \sigma_2 = \{\phi, \{c\}, \{a, c\}, Y\}.$  Define  $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  by f(a) = a, f(b) = c, f(c) = b. Then map f is  $D^*$  (2, 1)- $\sigma_2$ -continuous but not  $\hat{\hat{D}}$  (2, 1)- $\sigma_2$ -continuous.

**Example 5.13:** Let  $X = \{a, b, c\} = Y$ ,  $\tau_1 = \{\phi, \{a\}, X\}$ ,  $\tau_2 = \{\phi\}$ ,  $\{b\}$ ,  $X\}$  and  $\sigma_1 = \{\phi, \{b\}, \{c\}, \{b, c\}, Y\}$ ,  $\sigma_2 = \{\phi, \{a\}, \{a, b\}, Y\}$ . Define  $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  by identity mapping. Then map f is  $\hat{\hat{D}}$  (1, 2)- $\sigma_2$ -continuous but not  $D^*(1, 2)$ - $\sigma_2$ -continuous.



**Diagram** (5.18)

**Definition 5.14:** A map  $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$  is called  $\hat{\hat{D}}$  (i, j)- $\sigma_k$ -irresolute if the inverse image of every  $\sigma_k$ - $\hat{\hat{g}}$ -closed set in Y is (i, j)- $\hat{\hat{g}}$ -closed in X.

**Proposition 5.15:** If  $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$  is  $\hat{\hat{D}}$  (i, j)- $\sigma_k$ -irresolute then it is  $\hat{\hat{D}}$  (i, j)- $\sigma_k$ -continuous but not conversely.

**Example 5.16:** Let  $X = \{a, b, c\} = Y, \tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, \tau_2 = \{\phi\}, \{a\}, \{b, c\}, X\}$  and  $\sigma_1 = \{\phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}, Y\}, \sigma_2 = \{\phi, \{a, b\}, Y\}$ . Define  $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  by f(a) = c, f(b) = b, f(c) = a. Then map f is  $(1, 2) - \hat{g} - \sigma_2$ -continuous but not  $(1, 2) - \hat{g} - \sigma_2$ -irresolute.

**Proposition 5.17:** If  $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$  is  $\hat{\hat{D}}(i, j)$ -  $\sigma_k$ -continuous and  $(Y, \sigma_k)$  is  $\hat{\hat{T}}_{1/2}$ -space then f is  $\hat{\hat{D}}(i, j)$ -  $\sigma_k$ -irresolute.

**Proof:** Let  $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$  is (i, j)- $\hat{\hat{g}}$ - $\sigma_k$  - continuous then inverse image of every  $\sigma_k$ -closed set in Y is (i, j)- $\hat{\hat{g}}$ -closed in X. Since  $(Y, \sigma_k)$  is  $\hat{\hat{T}}_{1/2}$ -space so every  $\sigma_k$ - $\hat{\hat{g}}$ -closed set is  $\sigma_k$ -closed i.e. inverse image of every  $\sigma_k$ - $\hat{\hat{g}}$ -closed set is (i, j)- $\hat{\hat{g}}$ -closed so map f is (i, j)- $\hat{\hat{g}}$ - $\sigma_k$ -irresolute.

The following diagram summarizes the above discussions.

**Theorem 5.19:** Let  $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  be a map.

- (i) If  $(X, \tau_1, \tau_2)$  is an (i, j)- $T_{1/2}$  space then f is D(i, j)- $\sigma_k$ -continuous iff it is  $\hat{\hat{D}}(i, j)$ - $\sigma_k$ -continuous.
- (ii) If  $(X, \tau_1, \tau_2)$  is an (i, j)-  $\hat{\hat{T}}_{1/2}$  space then f is  $\tau_j$ - $\sigma_k$ continuous iff it is  $\hat{\hat{D}}(i, j)$ - $\sigma_k$ -continuous.

**Proof:** (i) Let  $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$  is  $D(i, j) - \sigma_k - continuous$  then inverse image of every  $\sigma_k$ -closed set is (i, j)-g-closed in X. Since  $(X, \tau_1, \tau_2)$  is  $(i, j) - T_{1/2}$  so every (i, j)-g-closed set is  $\tau_j$  -closed but every  $\tau_j$  -closed set is  $(i, j) - \hat{g}$ -closed so inverse image of every  $\sigma_k$ -closed set is  $(i, j) - \hat{g}$ -closed i.e. map f is  $\hat{D}(i, j) - \sigma_k$ -continuous.

Conversely let  $f:(X,\,\tau_1,\,\tau_2)\to (Y,\,\sigma_1,\,\sigma_2)$  is  $\hat{D}(i,\,j)$ -  $\sigma_k$  – continuous then by proposition (5.04) map f is  $D(i,\,j)$ - $\sigma_k$ -continuous.

Follows as above.

#### References

- 1. N. Levine, Amer. Math. Monthly, **70** (1963), 36-41.
- N. Levine, Rend. Circ. Mat. Palermo, 19 (1970), 89-96.
- 3. J, C. Kelly, Proc. London math. Sci., 13 (1963), 71-89.
- 4. I. Arockiaran, *Ph. D. Thesis*, *bharathiar Univ.*, Coimbatore, 1997.
- 5. Maki H., Sundaram P. and Balachandran K., Bul. Fukuoka Univ. Ed. Part III. 40 (1991), 23-31.
- 6. T. Fukutaka, *Bull. Fukuoka Univ.*, Ed. Part III 35 (1985), 19-28.
- 7. A. S. Mashhour, ME Abd El-Monsef and SN. El. Deeb., *Proc. Math. And Phys. Soc. Egypt*, **53** (1982), 47-53.
- 8. M. Stone, Trans. Amer. Math. Soc., **41** (1937), 374-481.
- 9. Y. Gnanambal, Ph. D. Thesis, bharathiar Univ., Coimbatore, 1998.
- T. Fukutaka, P. Sundaram And N. Nagaveni, Bull. Fukuoka Univ. Ed. Part III 48 (1999), 33-40.
- 11. M.K.R.S. Veera Kumar, *Indian J. Pure Appl. Math.* **43** (2) (2001), 231-247.
- 12. Manoj Garg, Shikha Agarwal ,C. K. Goel, On  $\hat{g}$  closed set in topological spaces, *Acta Cinecia Indica*,XXXIII M, 4, 2007, 1643-1651.
- 13. T. Fukutaka, P. Sundaram and M. Sheik John, *Bull. Fukuoka Univ. Ed. Part III* **51** (2002), 1-9.
- 14. M.K.R.S. Veera Kumar, *Mem Fac. Sci. Kochi Univ.* (*Math.*) **21** (2000), 1-19.
- 15. P. Bhattacharya and B. K. Lahiri, *Indian J. Math.* **29** (3), (1987) 375-382.
- 16. M. Sheik John, P. Sundaram, *Indian J. Pure Appl. Math.* **35** (1) (2004), 71-80.
- 17. A.P. Singh, M. Dixit and Manoj Garg, On \*g-closed set in bitopological spaces, *Ultra Sci. Phy. Sci.*, 21(1)A, 2014, 88-96.

\*\*\*\*\*