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A R T I C L E  I N F O                              A B S T R A C T  
 

Let  EN( T; Φ’ , Φ’’ )  denote  the  average  number  of  real  roots  of  the  random  
trigonometric  polynomial
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In the interval (Φ’, Φ’’). Clearly , T can  have  at  most  2n zeros  in  the  interval ( 0, 2π ). 
Assuming that  ak(ω )s  to  be  mutually independent  identically  distributed  normal 
random  variables . Dunnage [1]   has  shown  that  in  the  interval  0 ≤ θ ≤ 2π  all  save  a  
certain  exceptional  set  of  the  functions  (Tn ( θ,ω ))  have 
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 number of zeros  , when  n  is  large. We consider  the  

same  family  of  trigonometric  polynomials  and  use  the  Kac_rice  formula  for  the  
expectation  of  the  number  of  real  roots  and  obtain  that   
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This  result  is  better  than  that  of  Dunnage  since  our  constant  is  (1/√2) times  his  
constant  and  our  error  term  is  smaller .The  proof  is  based  on  the  convergence  of  
an  integral  of  which  an  asymptotic  estimation  is  obtained . 
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INTRODUCTION 
 

Let  N( T ; Φ’ , Φ’’ )  be  the  number  of  real  zeros  of  
trigonometric  polynomial    
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In  the  interval ( Φ’ , Φ’’ )  where  the  coefficients  ak(ω)  are  
mutually  independent  random  variables  identically  
distributed  according  to  the  normal  law and  bk=kp  are  
positive  constants  and  when  multiple  zeros  are  counted  
only  once . Let  EN ( T ;  Φ’ , Φ’’ )  denote  the  expectation  
of  N ( T ;  Φ’ , Φ’’ ). Obviously , Tn ( Φ, ω ) can  have  at  
most  2n  most  zeros  in  the  interval (0 , 2π ). Dunnage [1] 
has  shown  that  in  the  interval            0 ≤ θ ≤ 2π  all  save  a  
certain  exceptional  set  of  the  functions  Tn( θ, ω ) have                             
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Number of zeros when n is large. The  measure  of  the  
exceptional  set  does  not  exceed ( logn )-1 .  subsequently 
,Das[2] and  Qualls [ 3 ]  have  obtained  similar  results. In  
this  note  our  purpose  is  to  show  that  it  is  possible  to  
obtain  a  still  lower  estimate  for  the  expectation  of  the  
number  of  real  roots  of  ( 1 )  by  using  the  method  of  
Loggan &  shepp [4]. We show that  
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This  result is better than that of Dunnage since our constant  
is( 1 /√2)  times  his  constant  and  our  error  term  is  
smaller.    
  

The Approximation for En (T; 0, 2π) 
 

Let  L ( n )  be  a  positive-valued  function  of  n  such  that 
L(n) and  n/ L(n) both  approach  infinity  with  n . We take 
=L (n)/n throughout. Outside  a small  exceptional  set  of  ω 
the value of the function  Tn( θ ,ω )  has  a negligible  number 
of zeros in  each  of the intervals (0, ) ,( π- , π+) and 
(2π- ,2π). By  periodicity ,  of  zeros  in  each  of  intervals 
(0, ) and (2π- ,2π) is  the  same  as  number  in (- ,). 
We shall  use  the  following  lemma , which  is  due  to  Das 
[2] . 
 

Lemma 
 

The probability that Tn( θ ,ω) has more than               
1 + ( 2 / log 2)(logn+2n) number of zeros  in  ω-≤ θ ≤ ω+
  does  not  exceed  2 exp(-n) .This  lemma  is  due  to  
Das[2], in  the  special  case  Dn= ∑bn = n. The  expected  
number  of  zeros  of  T  in  the  interval (Φ’ , Φ’’) is  given  
by  the  Kac_Rice  formula   
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                    ( 2 ) 

Where the  probability  density  p  ,  T=  and  T’=η  is  

given  by  the  Fourier inversion formula 
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    ziTiTyEzy 'exp,   being the characteristic  

function  of  the  combined  variable  ( T , T’ ). In our case, 
we have 
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For ε > 0,  
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Where Re stands for the real part. 
 

Here , if  we  allow  coskθ , ksinkθ  to  be  arbitrary , that  is  
we  take  each  of  them  to  be  constant  in k ,then  the  
probability  density  p( ξ, η ) Of  ξ=T( θ ) = AX and  η= T’( θ 
) =BX , say , degenerates  and  we get  from (3)  the  
following  identity , valid  for  non-zero  A  and  B  which  
can  be  chosen  suitably .     
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Subtracting (4) from (3) we get 
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by transforming the  integrals  putting y = - uz  or  y = uz  and  
denoting 
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And                    H= (Au + B) 2 
 
Now  using  the  identity  (Logan  and  shepp[4] , for  α =2 ), 
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In the limit as ε→0 we obtain from (5) that 
 

 
 
 
 
 
Which  has  been  shown  in  3  to  be  a  convergent  integral. 
The  double  integral  appearing  in (5)  is  dominated  by  a  
decreasing  exponential  function. So  the  involved  integrals  
are  uniformly  convergent  on  any  interval. Since  the  
integral  on  the  right  side  of ( 6 ) converges , we conclude  
that  both  the  passage  to  the  limit  by  letting  ε→0  and  
the  subsequent  change  of  the  order  of  integration  to  
produce  the  equation ( 6) are  justified. 
 

Estimation of the Integral of Equation  
 

In this section we obtain an asymptotic estimation for   the 
integral 
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Where A and B are fixed non-zero real numbers. This integral    
exists in general as a principal value i.e.                                        
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As in Das [ 2]   we  have  for   
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Taking                    L (n) = logn.   
 
We have always by Cauchy’s in equality, AB ≥ C2. In what 
follows we will assume that AB > C2. This  happens  if  θ 
does  not  take  values  from  the  set {0,± π, ±2π,… } . In   
fact,                   
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Now x→0+ as u→0 or ∞. But  x > ε > 0 , if  εA4 u4  - 2u2A2 B2 

+ εB4 < 0 , which  occurs  for  all  u  in  the  interval  ( d1 
{O(n2) / √ ε } –d2 ) ,where  d1 , d2  are  functions  of  ε  
tending  to  zero  as  ε→0.   Thus for all u  in  the   interval 
(0,∞)  we  can  safely  assume  that  ε = 1 / n ,and  x= {1 / 
L(n)} , where  n  is  tending  to  infinity . Thus         
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Evaluation of En (T; Φ’, Φ’’) 
    

From (2), (6) and (12), we obtain   EN (T; Φ’, Φ’’) = 
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6

''' n  

      In view of our choice of A, B and C  
 
       EN (T; π+ε, 2π-ε) = EN (T; ε, π-ε)   
 
Again, by the lemma, we have   
 

   EN ( T ; 0 , ε ) + EN ( T ; π- ε , π+ε ) + EN ( T ; 2π-ε , 2π ) 
 
  = EN ( T ; π+ε , 2π-ε )  ≤  2 { 1 + ( 2 / log 2 )( log n + 2nε ) }       
 
 Now choosing ε = (log n) / n, the desired result follows. 
 

CONCLUSION  
 

The number of real zeros of trigonometric polynomial    
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When n is large. The  measure  of  the  exceptional  set  does  
not  exceed     ( logn )-1 .   
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