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1. Introduction 
 

In the maintenance problem of repairable system, initially a 
common assumption that after repair, the system is “as good as 
new” is used. Then minimal repair model was 
Barlow in which a system after repair would function again 
but with the same failure rate and the same effective age as at 
the time of failure. In practical, many systems are deteriorating 
due to ageing effect and accumulated wear. Accordingl
consecutive operating times after repair will be decreasing 
while the corresponding repair times after failure will be 
increasing. Consequently, a monotone process model would be 
a most appropriate model for a deteriorating system.
 

In this paper we introduce a partial product process and prove 
that it is a monotone process and study its application to 
maintenance model for a deteriorating system under policy N.
  

2. Partial Product Process 
 

At first, we recall some definitions. 
 

Definition 2.1. 
 

Given two random variables X and Y , X
stochastically larger than Y  (or Y  is stochastically less than 

X ) if 
 

   P X P Y    for all real  .  

This is written as .st stX Y or Y X   
 

Definition 2.2. 

A stochastic process  , 1, 2,3,...nX n 

stochastically increasing (decreasing) if   

  1n st st nX X    for all 1, 2,3,...n   
 

We now give the definition of partial product process.
 

Definition 2.3. 
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In the maintenance problem of repairable system, initially a 
common assumption that after repair, the system is “as good as 
new” is used. Then minimal repair model was introduced by 
Barlow in which a system after repair would function again 
but with the same failure rate and the same effective age as at 
the time of failure. In practical, many systems are deteriorating 
due to ageing effect and accumulated wear. Accordingly, the 
consecutive operating times after repair will be decreasing 
while the corresponding repair times after failure will be 
increasing. Consequently, a monotone process model would be 
a most appropriate model for a deteriorating system. 

introduce a partial product process and prove 
that it is a monotone process and study its application to 
maintenance model for a deteriorating system under policy N. 

Y X  is said to be 
is stochastically less than 



.X Y or Y X

, 1, 2,3,...  is said to be 

1, 2,3,...  

We now give the definition of partial product process. 

Let  , 1, 2,3,...nX n   be a sequence of non

independent random variables and let 

distribution function of 1X . Then 

called a partial product process if the distribution function of 

1iX   is    1, 2,3,..., 1iF x i n  

constants and 0 1 2 1...i i    
 

Lemma 2.1. 
 

For real  1, 2,3,...i i  ,  
 

Proof. The proof is by induction on 
 

When 
2

1 0 01, .
i

i   


  

Thus, the result is true for 1i 
Assume that the result is true for 

12
0.

n
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  is true. 
 

Then we have to prove that the result is true for 
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be a sequence of non-negative 

independent random variables and let  F x  be the 

1X . Then  , 1, 2,3,...nX n   is 

called a partial product process if the distribution function of 

1, 2,3,..., 1F x i n   where 0i  are 

0 1 2 1...i i      . 

1, 2,3,...
12

0

i

i 


 . 

. The proof is by induction on .i  

12
1 0 01, .

i
  


 

1i  . 
Assume that the result is true for i n . 

Then we have to prove that the result is true for 1i n  . 

n n n       

1 12 2
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n n
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Thus, the result is true for 1i n   also. 

By Lemma 1, the distribution function of 1iX   is 

12
0

i
F x

 
 
 

 for 1, 2,3,..., 1.i n   

Lemma 2.2. 
 

Givena partial product process  , 1, 2,3,...nX n  , 

(i)If 0 1,  then  , 1, 2,3,...nX n   is stochastically 

decreasing. 

(ii) If 00 1,   then  , 1, 2,3,...nX n   is 

stochastically increasing. 

Proof. Let 0 1. 
 

 

Note that for any 0  , 

     
12 2

0 0 0...
n

F F F F      
 

    
 

 

     

 
1 2 3

... n

P X P X P X

P X

  



     

  
This 

implies  , 1, 2,3,...nX n   is stochastically decreasing if 

0 1  . 

Similarly,  , 1, 2,3,...nX n   is stochastically increasing if 

00 1.   

Now, we can define the monotone partial product process. 
 

Definition 2.4 
 

A partial product process is called a decreasing partial product 

process if 0 1  , and is called increasing partial product 

process if 00 1.   

It is clear that if 0 1  then the partial product process is a 

renewal process. 
 

Lemma 2.3 
 

Let     2
1 1,E X Var X   . Then for 

1, 2,3,..., 1,i n   

 
11

2
0

iiE X



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2

1
2

0

iiVar X



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Proof. By Lemma 1, the density function of 1iX   is 

1 12 2
0 0

i i
f x 
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 
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for 1, 2,3,..., 1i n  .  
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3. The Model 
 

We consider a maintenance model for a deteriorating system 
under the following assumptions. 
 

(1) Initially a new system is installed. Whenever the system 
fails, it may be repaired or replaced by a new and identical 
one. 

(2) Let 1X  be the operating time before the 1st failure and let 

 F x be the distribution function of 1X . Let 1iX   be the 

operating time after the 
thi  repair for 1, 2,3,..., 1i n  . 

Then the distribution function of 1iX   is assumed to be 

12
0

i
F x

 
 
 

where 0 1   is a constant. That is the 

successive operating times  , 1, 2,3,...nX n   after repair 

constitute a decreasing partial product process or a renewal 

process. Also, assume that  1 0.E X    

(3) Let 1Y  be the repair time after the 1st failure and let 

 G y  be the distribution function of 1Y . For 

1, 2,3,..., 1i n  , let 1iY  be the repair time after the 
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 1
th

i  failure. Then the distribution function of 1iY   is 

assumed to be 
12

0

i
G x

 
 
 

where 00 1  is a constant. 

That is the consecutive repair times  , 1, 2,3,...nY n   form 

an increasing partial product process or a renewal process. 

Moreover, assume that  1 0E Y   . 0   means that 

the repair time is negligible. 

(4) Let Z be the replacement time with  E Z  . 

 (5) The repair cost rate is c, the reward rate is r and the 
replacement cost is R. 
 

4. The replacement policy N 
 

Definition 4.1. 
 

A replacement policy N is a policy in which we replace the 
system at the Nth failure of the system.  
 

Our aim is to find an optimal replacement *T such that the 
long-run average cost per unit time is minimized. 
 

By the renewal reward theorem, the long-run average cost per 
unit time under the replacement policy T is given by 
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the expected cost incurred in a cycle

the expected length of a cycle
N �  

1

1 1

1

1 1

N N

k k
k k

N N

k k
k k

E c Y R r X

E X Y Z



 



 

 
   

 
 

   
 

 

 

 

   

     

1

1 1
1

1 1

N N

k k
k k

N N

k k
k k

c E Y R r E X

E X E Y E Z



 


 

 



 

 

 
 

 

   

   

   

   

1

1
2

1
2

1
2

1

1
2

N

k
k

N

k
k

N

k
k

N

k
k

c E Y E Y R

r E X E X

E X E X

E Y E Y 













 
  

  

 
  
  



  








 

 

1 1

1 1

1

2 22 20 0
1

2 22 20 0

k k

k k

N N

k k

N N

k k

c R r
 

 
 

 
  

 

 

 



 



 

   
      
   
   

   

 

 
 

 

1

1

1

1

1

22 0

22 0

22 0

1

22 0

1
1

1
1

1
1

1
1

k

k

k

k

N

k

N

k

N

k

N

k

c R

r

r r










 






















  
   
  

  
        

    
  
  
  

  
         

  








 

 
 

  1

1

1

1

22 0

22 0

1

22 0

1
1

1
1

1
1

k

k

k

N

k

N

k

N

k

c r

R r
r









 


















  
   
  

  
    
  
  
  

  
         

  







 

 
Thus, �(�) = �(�) − �  where 

 

  1

1

1

1

22 0

22 0

1

22 0

1
1

1
1

1
1

k

k

k

N

k

N

k

N

k

c r

R r
D N









 


















  
   
  

  
   
  
  
  

  
         

  







 

We can determine the optimal replacement policy N* by 

minimizing �(�) or  D N . 

 
 
 

5. Numerical Example 
 

Let 0 01.05, 0.95, 5000, 40,R     

15, 10, 50 10c r and      

Then 
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The numerical results are presented in Table 5.1 and Figure 
5.1 respectively. 
 
 
 
 

Table 5.1 Values of N and �(
 

N �(�) N 
1 60.8021390 7 
2 13.19041758 8 
3 -0.94993124 9 
4 -6.68762557 10 
5 -8.44271604 11 
6 -7.44278906 12 

 

It is clear from the above table, the minimum value of 
�(�)occurs at N*=5. 
 

Figure 5.1 The graph of �(�)against N
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presented in Table 5.1 and Figure 

(�)
 
�(�) 

-3.88837109 
3.42414105 
9.56279092 
9.99934153 

10.00000001 
10.00000000 

It is clear from the above table, the minimum value of 

 
against N 

 

Conclusion 
 

In this paper, we have introduced a partial product process and 
showed that it is a monotone 
maintenance model for a deteriorating system, an explicit 
expression for the long-run average cost per unit time under 
the replacement policy N is derived. A numerical example is 
given to explain the methodology used.
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In this paper, we have introduced a partial product process and 
showed that it is a monotone process. By considering a 
maintenance model for a deteriorating system, an explicit 

run average cost per unit time under 
the replacement policy N is derived. A numerical example is 
given to explain the methodology used. 
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