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1. Introduction 
 

The maintenance Problem of a multistate degenerative system 
with k -working states having k -distinct rewards and 
-failure states with l -different repair costs is considered in this 
paper. The long-run average cost for a multistate degenerative 

system under the bivariate replacement policy 

T  is the working age of the system and N
failures of the system in derived. Existence of Optimality under 
the bivariate replacement policy is deduced. 

 

The rest of the paper is structured as follows: In the section 2, 
we give a general description of the model. We also present the 
monotone process model of a one-component multistate system 
and the relevant results regarding their Probability Structure. In
the section 3, we derive an experssion for the long
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The set of working state is }{1,2,=1 k

states is }2,1,{=2 lkkk    and the state space is 

21=  . Initially, assume that a new system in working 

state 1 is installed. Whenever the system fails, it will be 

repaired. Let nt  be the completion time of the 

0,1,2=n  with 0=0t  and let nS

occurrence of the thn  failure, 1,2,=n  

 <<<<<< 110 nn tstSt
 

Consider a monotone process model for a multistate 
one-component system described in this section and make
following package of assumptions 2.1-2.8 

  

2.1  At the beginning, a new system is installed. The system 
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The maintenance Problem of a multistate degenerative system 
distinct rewards and l

different repair costs is considered in this 
run average cost for a multistate degenerative 

system under the bivariate replacement policy ),( NT  where 

N  is the number of 
failures of the system in derived. Existence of Optimality under 

 

The rest of the paper is structured as follows: In the section 2, 
we give a general description of the model. We also present the 

component multistate system 
and the relevant results regarding their Probability Structure. In 
the section 3, we derive an experssion for the long-run average 

cost per unit time for this model under a bivariate replacement 

policy ),( NT . Existence of optimality under the bivariate 

replacement policy is also deduced in this section. 
conclusion is given in section 4.
 

2. Description of the Model
 

In this section, we describe the model of a one
multistate system. We also evaluate the conditional 
probabilities of the operating time and failure time given the 
state of the system. 
 

Consider a one-component multistate system with 

states k -workers states and l
 

The system state at time t  is given by

1,2,=(

1,2,=(

jttimeatstatefailurejtheinissystem

ittimeatstateworkingitheinissystem
th

th

}  the set of failure 

and the state space is 

. Initially, assume that a new system in working 

state 1 is installed. Whenever the system fails, it will be 

be the completion time of the thn  repair, 

 be the time of 

 then  

Consider a monotone process model for a multistate 
component system described in this section and make the 

At the beginning, a new system is installed. The system 

has )( lk   possible states, where the states 

denotes, respectively, the first

second-type working state, k
states (,2),(1),( kkk  
first-type failure state, the second

thl  type failure state of the system. The occurrances of these 
types of failures are stochastic and mutually exclusive. 
 

2.2  Whenever the system fails in any of the failure states, it 
will be repaired. The system will be repalaced by an identical 
one some times later.  
 

2.3  Let nX  be the survival time of the system after 

stn 1)(   repair. then {Xn

increasing geometric process with parameter 
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cost per unit time for this model under a bivariate replacement 

. Existence of optimality under the bivariate 

replacement policy is also deduced in this section. Finally, 
conclusion is given in section 4. 

Description of the Model 

In this section, we describe the model of a one-component 
multistate system. We also evaluate the conditional 
probabilities of the operating time and failure time given the 

component multistate system with )( lk   

-failure states. 

is given by

),1,2,

),1,2,

l

k




 

possible states, where the states k1,2,  

denotes, respectively, the first-type working state, the 
thk  type working state and the 

)lk   denote, respectively, the 

type failure state, the second-type failure state, and the 

type failure state of the system. The occurrances of these 
types of failures are stochastic and mutually exclusive.  

Whenever the system fails in any of the failure states, it 
will be repaired. The system will be repalaced by an identical 

be the survival time of the system after 

}1,2,=, nn  forms a non- 

increasing geometric process with parameter 1>a  and 
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2.4  Let nY  be the repair time of the system after thn  failure. 

Then }1,2,=,{ nYn  forms a non- decreasing geometric 

process with parameter 1<<0, bb  and 0=)( 1 YE . 

Here 0=  mean that repair time is negligible.  
 

2.5   If the system in working state i  is operating, then let the 

reword rate be ir  if the system in failure state )=( ik  is 

under repair, the repair cost is ic . The replacement cost 

comprises two parts. One part is the replacement cost R  and 

the other proportional to the replacement time Z  at rate pC . 

In other words, the replacement cost is given by .ZCR p   
 

2.6  Assume that kaaa  211  and 

0>1 21 kbbb   .  
 

2.7  Assume that )(tFn  is the cumulative distribution of 

i

n

in XL  1=
=  and )(tGn  be the cumulative distribution of 

i

n

in YM  1=
= .  

 

2.8  The survival time nX , the repair time nY  and the 

replacement time )1,2,=(, knZ   are independent random 

variables. We now describe the probability structure of the 
model. 
 

Assume that the transition probability from working state 

kii 1,2,=,  to failure state ljjk ,1,2,=),(   is  

,=)=)(/=)(( 1 jnn qitSjksSP   

with lq j

l

j
=

1= . Moreover, the transition probability from 

failure state ljjk ,1,2,=,   to working state 

kii 1,2,=,  is given by  

inn PjksSitSP =)=)(/=)((   

with 1=
1= i

k

i
p . 

Assume that there exists a life-time distribution )(tU  and 

kiai 1,2,=0,>  such that 
 

)(=)( 1 tUtXP                                    

(2.1) 
 

 and  

kitaUitStXP i ,1,2,=),,(=)=)(/( 12         

(2.2) 
 

 where kaaa  211 . 

In general for },{1,2, ki j    

),,(=)=)(,,=)(/(
111111 taaUitSitStXP

niinnn    

(2.3) 
 

Similarly, assume that there exists a life-time distribution 

)(tV  and 0,>ib   
 

li ,1,2,=   such that 
 

)(=)=)(/( 11 tbViksStYP i                 

(2.4) 
 

where 0>1 21 lbbb    and in general, for 

}{1,2, li j    

 

),,(=)=)(,,=)(/(
11 tbbViksSiksStYP

niinnn  
  

(2.5) 

3.  The Policy ),( NT  
 

In this section, we introduce and study a bivariate replacement 

policy ),( NT  for the multistate degenerative system, under 

which system is replaced at working age T  or at the time of 
N -th failure, whichever occurs first. The problem is to choose 

an optimal replacement policy 
*),( NT  such that the long-run 

average cost per unit time is minimized. The working age T  
of the system at time is the commutation life-time given by 
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where i

n

in XL  1=
=  and i

n

in YM  1=
=  and 

0== 00 ML
 

 

Following Lam [2005], the distribution of the survival time 

nX  in assumption 2.3 and the distribution of the repair time 

nY  in assumption 2.4 are given by  
 

)(
!!

1)!(
=)( 1

1
1

1

1

1=1

1=

taaUpp
jj

n
tXP kj

k

jkj

k

j

k

nj

k

i

n 



 

 

 

 

(3.1) 
 

where 
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(3.2) 

 where 
Zljjj ,, 21 , If =)( 1XE , then the mean 

survival time is 
1=)( n

nXE  , for 1,>n  

 where 



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p
1=

=  and If =)( 1YE  then the mean 

repair time is  n
nYE =)(  

 
for 1>n , where  
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Further if in rR =  denotes the reward earned after the 
thn  

repair, where kiisS n 1,2,=,=)( 1  then mean reward 

earned after 1)( n -st repair is rXRE =)( 11  and for 

2n  then expected reward after installation is given by  
 

1=)( n
nn rXRE 

                                     
(3.3) 

where 
i

iik

i a

pr
r  1=

=  and if in cC =  denote the repair cost 

after the thn  failure, where liiksS n 1,2,=,=)(   

then mean repair cost after thn  failure is  
 

n
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The length of a cycle under the bivariate replacement policy 

),( NT  is  

 

ZTLYTTLYXW Ni
i

Ni

N

i
i

N

i


















 



)>()(=
1=

1

1=1=




 
 

where 1,0,1,2,= N  is the number of failures before 

the working age of the system exceeds T  and (.)  denote 

the indicate functions.From Leung [2006], we have 
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Lemma 3.1  The mean length of a cycle under the policy 

),( NT  is  
 

  


 )()(=)( 1
1

1=
0

TFduuFwE i
i

N

i

N

T

            
(3.5)

Proof.Consider  

)(=)( )>(
1=

)(

1

1=1=

ZEYTEYXEwE TNLi
i

TNLi

N

i
i

N

i


































  






 

     

][= )>(\)(

1

1=1=
TNLNTNLi

N

i
i

N

i

TELYXEE  




























 



  

 )()>(
1=

ZEYE TNLi
i

















  



 

     )()()()(=
1

1=
00

TFTudFYEuudF NNi

N

i

T

N

T

 


 

   




 ][ )<1(
1

1

1=
NLTL

i
N

i

E  

       







 ][)()()(= )1(
1

1

1=

1
1

1=
0 NLTL

i
N

i

NN
i

N

i
N

T

PTFTTFuudF  

       





 )()]()([)()(= 1
1

1=

1
1

1=
0

TFTFTFuudFTFT N
i

N

i
Ni

i
N

i
N

T

N  

       


 )()(= 1
1

1=
0

TFduuF i
i

N

i

N

T

 

 which is (3.5) 

Lemma 3.2   If TLN   and 2n , then the expected reward earned is  
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Lemma 3.3   If TLN >  and 2n , then the expected reward earned is  
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Lemma 3.4   If TLN  , then the expected repair cost is  
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which on simplification yields (3.8) 
 

Lemma 3.5   If TLN > , then the expected repair cost is  
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Let 1T  be the first replacement time and let 2)( nTn  be the time between 
stn 1)(   replacement and thn  replacement. Then 

the sequence 1,2,=, nTn  forms a renewal process. The interarrival time between two consecutive replacements is renewal 

cycle. By the renewal reward theorem, the long-run average cost per unit time under the multistate bivariate replacement policy 

),( NT  is given by 
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using Lemma 3.1 to 3.5, we obtain 
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On Summarizing the above facts, we have the following results. 
 

For the model described in section 2, under the assumptions 1.1 to 1.8 the long-run average cost per unit time under the bivariate 

replacement policy ),( NT  for a multistate degenerative system is given by 





















































)()(

)]()([

)()()(

=),(
1

1

1=
0

2

2=

1
0

2

2=

1
1

1=

TFduuF

RCTFTFr

TrudFurTFC

NT

n
n

N

n

N

T

pNn
n

N

n

N

T
n

N

n
n

n
N

n

C

 
4. Deductions 
 

Here ),( NTC  is a bivariate function. Obviously, when N  is 

fixed, ),( NTC  is a function of T  for fixed mN = , it can 

be written as  

1,2,=),(=),( mTCNT mC  

Thus for a fixed m , we can fixed 
*

mT  by analytical or 

numerical methods such that )( *
mm TC  is minimized. That is 

when  ,1,2,= mN  we can fixed 



Bivariate Optimal Replacement Policy for a Multi State Degenerative System with Varying Cost Structures… 
 

85 | P a g e  

 ,,,,, **
3

*
2

*
1 mTTTT  respectively, such that corresponding 

 )(,),(),( **
22

*
11 mm TCTCTC  are minimized. 

 

Because the total life time of a multistate degenerative system is 
limited, the minimum of the long-run average cost per unit time 
exists. So we can determine the minimum of the long run 
average cost per unit time based on 

)...(,),(),( **
22

*
11 mm TCTCTC   for example, if the 

minimum is denoted by )( *
nn TC  we obtain the bivariate 

optimal replacement policy 
*),( NT  such that  

)(min=)),(( **
nn

n
TCNTC

 
 

CONCLUSION 
  

By concluding a repairable system for a monotone process 
model of a one component multistate degenerate system 
explicit expression for the long-run average cost per unit time 

under the bivariate replacement policy ),( NT  is derived. 

Existence of optimality under the bivariate replacement policy 
is also deduced. 
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