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1. Introduction

Fuzzy set theory was introduced by Lotfi A. Zadeh in 1965
[6]. Since then fuzzy mathematics has been applied in various
fields like decision making, pattern recognition, information
processing and various analysis methodologies. Fuzzy
numbers are one of the most used fuzzy tools in fuzzy
applications. They are used to quantify certain concepts like
close to five, nearly five, approximately five etc. Fuzzy
numbers are basically fuzzy sets satisfying the properties of
normality, convexity and piece-wise continuity. Lotfi A.
Zadeh introduced the concept of fuzzy numbers in 1975 [7, 8,
9]. Triangular fuzzy numbers, trapezoidal fuzzy numbers and
pentagonal fuzzy numbers are most popular forms of fuzzy
numbers used in various applications. In 1994 Bustine, H., and
Burillo, P., proposed the definition of intuitionistic fuzzy
numbers [2]. In was based on the definition of intuitionistic
fuzzy sets introduced by Atanassov in 1983[1]. Intuitionistic
fuzzy numbers are very useful in capturing imprecise data. The
triangular fuzzy numbers, trapezoidal fuzzy numbers have
been extended to respective intuitionistic fuzzy numbers.

In the year 2014 T. Pathinathan and K. Ponnivalavan
introduced pentagonal fuzzy number [4]. This number was
introduced mainly to capture the variations that occur in the
curve at different levels which triangular and trapezoidal fuzzy
numbers fail to do so. Ponnivalavan, K. and Pathinathan, T.
introduced intuitionistic pentagonal fuzzy numbers [5] in order
to accommodate the value of non-membership in case of
pentagonal fuzzy numbers. In 2012 R., Parvathi and C.
Malathi introduced Symmetric trapezoidal intuitionistic fuzzy
numbers [6]. In this paper we propose symmetric pentagonal
intuitionistic fuzzy numbers. The shape of the membership
functions of symmetric fuzzy numbers are simpler and more
regular, which lead to less complex calculations and more
natural interpretations. Therefore, introduction of SPIFNs can
help us for less complex calculations and more natural
interpretations.

In the second section, preliminary definitions are discussed.
We also propose representation of symmetric pentagonal fuzzy
numbers in this section. In the third section, we define
symmetric pentagonal intuitionistic fuzzy numbers with
geometric representation. We also discuss some of the

properties of the number. Some of the algebraic operations are
discussed with a numerical example in the fourth section.

2. Preliminaries

2.1. Fuzzy Number [3]: A fuzzy number is a fuzzy set
~

A on

the real line  , whose membership function ~
A

 satisfies the

following conditions:

1. Normality i.e. there exists an element 0x such that

1)( 0~ x
A


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2.2. Intuitionistic fuzzy number [2] : An intuitionistic fuzzy

number is an intuitionistic fuzzy set IA
~

on the real line 
satisfying the following condition in addition to that of three
conditions of fuzzy number:

1. Concavity for the non-membership function i.e.

2.  212121 ,))(),(max())1(( ~~~ xxxxxx
AAA


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2.3. Pentagonal Fuzzy Number [4]: Pentagonal fuzzy

number is a fuzzy set denoted as PA
~

= (a1, a2, a3, a4, a5) and
whose membership function is defined as [4]
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2.4. Pentagonal Intuitionistic Fuzzy Number [5]

Pentagonal intuitionistic fuzzy number of a intuitionistic fuzzy

set IA
~

is denoted as
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~
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as
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2.5. Symmetric Pentagonal Fuzzy Number

Symmetric pentagonal fuzzy number is denoted as

),,,,(~ mmnna
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3. Symmetric Pentagonal Intuitionistic Fuzzy
Number
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intuitionistic fuzzy set SPIA
~

=
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3.1. Geometrical Representation of SPIFN

3.2. Properties of SPIFN
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Property 2

The condition to transform SPIFN
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Property 3

The condition to transform SPIFN
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3.3. Arithmetic operations on SPIFN
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m’1+m’2, m’1+m’2 ]

Proof:

The Membership and non-membership function of
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),(  -cut method.  -cut for membership function of

SPIA
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is [a+m1( -1) -  n1,  n1+(a-n1),(a+n1) -  n1, m1(1-
 )+ n1+a] for all in [0,1].  -cut for membership

function of SPIB
~

is [b+m2( -1) -  n2,  n2+(b-n2),(b+n2) -  n2, m2(1- )+
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~~~

 is given by
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2. Subtraction:

SPIA
~

= [a, n1, n1, m1, m1; a, n’1, n’1, m’1, m’1]

SPIB
~

= [b, n2, n2, m2, m2; b, n’2, n’2, m’2, m’2 ]

SPISPISPI BAC
~~~

 = [a-b, n1+n2, n1+n2, m1+m2, m1+m2; a-
b, n’1+n’2, n’1+n’2, m’1+m’2, m’1+m2 ]

This could be proved in the same manner as in the case of
addition.

3. Scalar Multiplication:

SPIA
~

= [a, n1, n1, m1, m1; a, n’1, n’1, m’1, m’1]

 SPIA
~

=  [a, n1, n1, m1, m1; a, n’1, n’1, m’1, m’1]

= [ a,  n1,  n1,  m1,  m1;  a,  n’1,
 n’1,  m’1,  m’1]

All these results for algebraic operations could be proved by
directly applying arithmetic operation rules already defined
for the pentagonal intuitionistic fuzzy numbers. We need to
substitute the values of the 5-tuples accordingly using the
values of m, n, n’ and m’.

3.3.1. Numerical Examples
We consider two SPIFNs

SPIA
~

= [.3,.15,.15,.2,.2; .3,.2,.2,.25,.25]



Symmetric Pentagonal Intuitionistic Fuzzy Number

14 | P a g e

SPIB
~

= [.4,.15,.15, 2.5,2.5; .4,.2,.2,.35,.35]

SPISPI BA
~~

 = [.3,.15,.15,.2,.2; .3,.2,.2,.25,.25]+ [.4,.15,.15,
2.5,2.5; .4,.2,.2,.35,.35]

= [.7,.3,.3,.45,.45; .7,.4,.4,.6,.6]

SPIA
~

SPIB
~

SPISPI BA
~~



SPISPI BA
~~

 = [.3,.15,.15,.2,.2; .3,.2,.2,.25,.25]- [.4,.15,.15, 2.5,2.5; .4,.2,.2,.35,.35]

= [-.1, .3,.3,.45,.45; -.1,.4,.4,.6,.6]

SPIA
~

SPIB
~

SPISPI BA
~~



 SPIA
~

=2 SPIA
~

= 2[.3,.15,.15,.2,.2; .3,.2,.2,.25,.25]

= [.6,.3,.3,.4,.4; .6,.4,.4,.5,.5]
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SPIA
~

SPIA
~



Conclusions

We have defined symmetric pentagonal intuitionistic fuzzy
numbers with proper geometric representation. We have
discussed some of the properties with proofs. We have also
proposed algebraic operations illustrating them with an
example.
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