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INTRODUCTION 
 

It has been known for some time now that relationships exist 
between humans and resident microbes throughout life which 
consist of a continuum of mutually beneficial and 
nonbeneficial conditions (symbiosis, commensalism and 
parasitism) (1).  These relationships closely involve 
interactions with carbohydrate structures (glycans) expressed 
by the epithelial cells of the ecological niches where mutual 
and commensal bacteria reside (2).  Experimental findings 
point towards defined chemical and molecular entities (glycans 
such as histo-blood group antigens, HBGA) as the basis 
underlying some if not all of these fundamental relat
(3-5).  Both the ABO (codifying for the A, B and O antigens) 
and the Lewis genes (transcripting for the fucosyltransferase 3 
[FUT3] enzyme), with the addition of the Secretor (FUT2) are 
the main genetic components of the HBGA system 
importance of HBGA (especially ABO and Lewis) in the 
interactions with all microbes cannot be underestimated given 
their practically ubiquitous presence in the holobiont 
 

We, humans, should acknowledge that our most intimate 
nature is that of a holobiont, a composite organism constituted 
by human cells and is microbiome (the highly mutualistic 
microbial flora) (8).   
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                             A B S T R A C T  
 

 

About a century ago, the ABO blood type was discovered 
into four basic blood groups: A, B, AB and O.  This new typology is based on well
and precise biochemical markers which have been lately demonstrated to influence health 
and disease.  Blood type diets (BTD) have been developed to take advantage of this genetic 
diversity.  The reasons are biochemical in nature. Glycans (special carbohydrates which 
cannot be hydrolysed by human enzymes), are present in all food items and may trigger 
immune, inflammatory or tolerance responses.  Most recently, a new concept has emerged 
from life sciences: the holobiont.  Humans are metaorganisms and as such are subject to a 
delicate equilibrium with their proper microbiota.  The microbiome is aligned 
biochemically with the genetics of their host so that everyone has their personalized 
composition of the microbes.  The several variabilities of the ABO blood type can explain 
this individualization of diet (BTD), which respect the genetic makeup of each person.  
Notwithstanding this personalization it is still possible to group people into the four blood 
groups which manifest phenotypically different features.  Among these, gastric secretion 
has been shown to be higher in type O than other blood groups, allowing the former to 
consume greater amounts of meat (proteins) and easily digest it. In the end, BTD is a form 
of personalized nutrition that can aid a more holistic approach to health.

      
 
 
 

It has been known for some time now that relationships exist 
between humans and resident microbes throughout life which 
consist of a continuum of mutually beneficial and 
nonbeneficial conditions (symbiosis, commensalism and 

.  These relationships closely involve 
interactions with carbohydrate structures (glycans) expressed 
by the epithelial cells of the ecological niches where mutual 

.  Experimental findings 
point towards defined chemical and molecular entities (glycans 

blood group antigens, HBGA) as the basis 
underlying some if not all of these fundamental relationships 

.  Both the ABO (codifying for the A, B and O antigens) 
and the Lewis genes (transcripting for the fucosyltransferase 3 
[FUT3] enzyme), with the addition of the Secretor (FUT2) are 
the main genetic components of the HBGA system (6).  The 
importance of HBGA (especially ABO and Lewis) in the 
interactions with all microbes cannot be underestimated given 

uitous presence in the holobiont (7).   

should acknowledge that our most intimate 
nature is that of a holobiont, a composite organism constituted 
by human cells and is microbiome (the highly mutualistic 

A holobiont is therefore an individual with an emergent 
phenotype composed of both his or her own genome and cells 
(eukaryotes) and the resident microbiota’s 
cells/viruses at any given point in time, forming the 
hologenome (9, 10).  The macrobe (the host) has different 
forms of interactions (opportunistic, competitive or 
cooperative) with all of its associated microbiota, including 
bacteria, archaea, viruses, protists, fungi, and microscopic 
multicellular animals such as nematodes 
of biology, emerging from the ground
the universality and diversity of microorganisms 
(microbiology), affords a holistic view of bio
complexity of human beings 
substrates for the bacteria in the colon (the densest and 
probably the most important of the host
communities), contributes to influencing al
biology and health (13).   
 

Given this new light shining on medicine and health and life 
sciences, a review of previous findings on blood type diets 
(BTD) and their newly proposed mechanism of action will aid 
in our journey towards a more comprehensive medicine 
 

ABO Blood Biotypology  
 

Glycans are known to be involved in the physiologic 
development of all major diseases (immune diseases, 
inflammation and cancer), due to their ability to regulate the 
immune system and be the intermediaries between human cells 
and the microbiome (15, 16)
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About a century ago, the ABO blood type was discovered which further divide humanity 
into four basic blood groups: A, B, AB and O.  This new typology is based on well-defined 
and precise biochemical markers which have been lately demonstrated to influence health 

eveloped to take advantage of this genetic 
diversity.  The reasons are biochemical in nature. Glycans (special carbohydrates which 
cannot be hydrolysed by human enzymes), are present in all food items and may trigger 

nses.  Most recently, a new concept has emerged 
from life sciences: the holobiont.  Humans are metaorganisms and as such are subject to a 
delicate equilibrium with their proper microbiota.  The microbiome is aligned 

host so that everyone has their personalized 
composition of the microbes.  The several variabilities of the ABO blood type can explain 
this individualization of diet (BTD), which respect the genetic makeup of each person.  

tion it is still possible to group people into the four blood 
groups which manifest phenotypically different features.  Among these, gastric secretion 
has been shown to be higher in type O than other blood groups, allowing the former to 

unts of meat (proteins) and easily digest it. In the end, BTD is a form 
of personalized nutrition that can aid a more holistic approach to health. 

A holobiont is therefore an individual with an emergent 
phenotype composed of both his or her own genome and cells 
(eukaryotes) and the resident microbiota’s genetic material and 
cells/viruses at any given point in time, forming the 

.  The macrobe (the host) has different 
(opportunistic, competitive or 

cooperative) with all of its associated microbiota, including 
bacteria, archaea, viruses, protists, fungi, and microscopic 
multicellular animals such as nematodes (11).  This new vision 
of biology, emerging from the ground-breaking researches on 
the universality and diversity of microorganisms 
(microbiology), affords a holistic view of biological 
complexity of human beings (12).  Diet, by providing 
substrates for the bacteria in the colon (the densest and 
probably the most important of the host-associated microbial 
communities), contributes to influencing all aspects of human 

is new light shining on medicine and health and life 
sciences, a review of previous findings on blood type diets 
(BTD) and their newly proposed mechanism of action will aid 
in our journey towards a more comprehensive medicine (14). 

Glycans are known to be involved in the physiologic 
development of all major diseases (immune diseases, 
inflammation and cancer), due to their ability to regulate the 
immune system and be the intermediaries between human cells 

).  There is a large body of 
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evidence pointing directly to ABO, Lewis (Le) and Secretor 
(Se) glycans as factors implicated in disease susceptibility and 
microbial interactions (17-20).  One possible constitutional 
approach that can be used in anthropology, and also in 
constitutional medicine which is always linked to medical 
information, is blood group categorization (21
 

The ABO blood group system was first discovered by Austrian 
scientist, Karl Landsteiner, in 1900/1901 with three different 
blood types (A, B and O) and in 1902 the last blood type AB 
was discovered by two other researchers 
antigens are oligosaccharides antigens and are widely 
expressed on the membranes not just of red blood cells (
but also on many other human tissue cells (24
there are about 2 million ABO antigen sites on RBC, and many 
are also present on the sensory neurons, epithelium, the 
vascular endothelium and platelets (25).  Biochemically, these 
four blood types (A, B, AB and O) are inherited through genes 
on chromosome 9 (at 9q34.1 and 9q34), the ABO locus, which 
has three allelic forms (A, B and O), and encode for specific 
glycosyltransferases (26).  Since this discovery, many 
scientists have tried to search for associations between the 
ABO system of patients and various pathologies (disease 
susceptibility) (27).  Researches were also performed 
investigating the association of the blood type of individuals 
with several psychological factors such as personality 
1927, for example, based on blood types, Furukawa Takeji 
distinguished people into four temperament types: A, B, AB, 
and O (29). 
 

The ABO blood group system forms a typology.  The ABO 
system can be expressed in a typological field (a fourfold 
table), where each of the possible combinations are called 
constructed types (30).  This is represented in 
 

Table 1  ABO Blood-Type System
 

Antigens A ~A (non
B AB (universal receiver) B 
~B (non-B) A O (Universal Donor)

 

The ABO, Le and Se phenotypic expression (glycans) are 
intimately linked together as the ABO defines the ultimate 
structure of the glycan (A, B. or O, from the 
fucosyltransferase [FUT1 (H)]) while FUT3 (Le) adds a fucose 
in -3 to the base glycan and FUT2 (Se) adds a fucose in 
in exocrine secretions (31).  Hence, the ABO phenotype 
imposes limitations to the type of glycans being expressed by 
Le and Se genes, while Lewis and Secretor type imposes more 
variability on the manifestation of such glycans in humans.  
wit, a person with blood type A will have only A antigens 
expressed in the Lewis form (including Lex/Le
but not BLey), while a blood type O individual 
or B antigens (only Lex/Ley and Leb) (32).  The ABO blood 
group antigens are graphically represented in 
 

Figure 1  ABO Blood Groups 
 

 

International Journal of Current Advanced Research Vol 8, Issue 07(C), pp 19494-19500
 

19495 

evidence pointing directly to ABO, Lewis (Le) and Secretor 
(Se) glycans as factors implicated in disease susceptibility and 

.  One possible constitutional 
approach that can be used in anthropology, and also in 
constitutional medicine which is always linked to medical 

21).   

The ABO blood group system was first discovered by Austrian 
scientist, Karl Landsteiner, in 1900/1901 with three different 
blood types (A, B and O) and in 1902 the last blood type AB 
was discovered by two other researchers (22, 23).  ABO 
antigens are oligosaccharides antigens and are widely 
expressed on the membranes not just of red blood cells (RBC), 

24).  It seems that 
there are about 2 million ABO antigen sites on RBC, and many 
are also present on the sensory neurons, epithelium, the 

.  Biochemically, these 
four blood types (A, B, AB and O) are inherited through genes 
on chromosome 9 (at 9q34.1 and 9q34), the ABO locus, which 
has three allelic forms (A, B and O), and encode for specific 

.  Since this discovery, many 
scientists have tried to search for associations between the 

tients and various pathologies (disease 
.  Researches were also performed 

investigating the association of the blood type of individuals 
with several psychological factors such as personality (28).  In 
1927, for example, based on blood types, Furukawa Takeji 
distinguished people into four temperament types: A, B, AB, 

The ABO blood group system forms a typology.  The ABO 
system can be expressed in a typological field (a fourfold 
table), where each of the possible combinations are called 

.  This is represented in Table 1. 

Type System 

~A (non-A) 

O (Universal Donor) 

The ABO, Le and Se phenotypic expression (glycans) are 
intimately linked together as the ABO defines the ultimate 
structure of the glycan (A, B. or O, from the -2-
fucosyltransferase [FUT1 (H)]) while FUT3 (Le) adds a fucose 

3 to the base glycan and FUT2 (Se) adds a fucose in -3 
.  Hence, the ABO phenotype 

imposes limitations to the type of glycans being expressed by 
Le and Se genes, while Lewis and Secretor type imposes more 
variability on the manifestation of such glycans in humans.  To 
wit, a person with blood type A will have only A antigens 

/Ley, ALeb or ALey, 
), while a blood type O individual will have no A 

.  The ABO blood 
group antigens are graphically represented in Figure 1. 

 

 

Legend: Typical cartoon representation of 1. Blood group A, 2. 
Blood group B, 3. Blood group O.
 

ABO and Lewis can be expressed on lipids 
proteins (glycoproteins) in both O
without a carrier (free forms). 
 

Variabilities 
 

There exist some variants within both the A and the B antigens 
so that these are classified as subgroups by the quantity of the 
relative antigen present (33, 34
is shown in the presence of A and B subgroupings.  Weaker 
phenotypes of both A and B antigens have been identified and 
studied at a genetic level and result from polymorphism (base 
substitution or deletion/frame shift) of
Experiments have shown that all rare A and B subgroups 
display weaker serological reactivity compared to A
(36). These are shown to be less expressed on the erythrocytes, 
to give weaker reactions or to be nonreactive serolog
with anti-A or anti-B antisera and can easily be mistyped as 
blood group O individuals (37)
 

These are defined with progressive numerals indicating a 
smaller amount of the sites or density of the determinant on the 
RBC, with relative loss of agglutinability and function: A
A3, Ax, etc. (38).  Although this polymorphism is known (as a 
result of genetic mutation) 
subgrouping (39), the impact on the classification system is 
negligible. 
 

Those with weaker genetic A or B antigen will phenotypically 
display ever more characteristics resembling an O blood type 
and thus will be closer to a combined/mixed constitution 
(something like an A/O and B/O).
 

Within the ABO subgroups, the weaker phenotypes of both A 
and B antigens are shown on the erythrocytes to give weaker 
reactions or to be nonreactive serologically with anti
B antisera and can easily be mistyped as blood group O 
individuals (37). 
 

To visualize this graphically, 
weaker phenotypes on a continuum and their ‘relative’ 
closeness to (distance from) the O blood group (in descending 
order of site density from the point of the arrows).
 
 

 

Figure 2  ABO Subgroup Continuum
 

Note: The B subgroups are identical to the A with the 
exception that there is no B2, B
the O blood glycan is not shown for 
 

The importance of this typology lies in the fact that the ABO 
system can easily identify a biological marker to assess the 
influence of genetic factors of the individual 
it has recently been proposed that the oligosaccharides 
(glycans) that form the ABO system are fundamentally
correlated to a myriad of different biochemical functions in the 
human body (14).  As the glycome is comprised of many 
glycans often attached to proteins and lipids as a result of 
multiple competing enzymatic activities, it has often been 
neglected as too complex to study 
now available to start looking into these critical molecules.  
Cell surface glycans (in the form of a dense coat called the 
glycocalyx), extracellular matrix

19500, July 2019 

Legend: Typical cartoon representation of 1. Blood group A, 2. 
Blood group B, 3. Blood group O. 

ABO and Lewis can be expressed on lipids (glycolipids), 
proteins (glycoproteins) in both O- and N-glycan forms and 

There exist some variants within both the A and the B antigens 
so that these are classified as subgroups by the quantity of the 

34).  An initial layer of variability 
is shown in the presence of A and B subgroupings.  Weaker 
phenotypes of both A and B antigens have been identified and 
studied at a genetic level and result from polymorphism (base 
substitution or deletion/frame shift) of the ABO gene (35).  
Experiments have shown that all rare A and B subgroups 

lay weaker serological reactivity compared to A1 or B 
. These are shown to be less expressed on the erythrocytes, 

to give weaker reactions or to be nonreactive serologically 
B antisera and can easily be mistyped as 

). 

These are defined with progressive numerals indicating a 
smaller amount of the sites or density of the determinant on the 
RBC, with relative loss of agglutinability and function: A1, A2, 

.  Although this polymorphism is known (as a 
 and accounts for effective 

, the impact on the classification system is 

netic A or B antigen will phenotypically 
display ever more characteristics resembling an O blood type 
and thus will be closer to a combined/mixed constitution 
(something like an A/O and B/O). 

Within the ABO subgroups, the weaker phenotypes of both A 
and B antigens are shown on the erythrocytes to give weaker 
reactions or to be nonreactive serologically with anti-A or anti-
B antisera and can easily be mistyped as blood group O 

To visualize this graphically, Figure 2 describes the various 
weaker phenotypes on a continuum and their ‘relative’ 
closeness to (distance from) the O blood group (in descending 

ty from the point of the arrows). 

 
ABO Subgroup Continuum 

Note: The B subgroups are identical to the A with the 
, Bend, and By.  Polymorphism of 

the O blood glycan is not shown for simplicity. 

The importance of this typology lies in the fact that the ABO 
system can easily identify a biological marker to assess the 
influence of genetic factors of the individual (40).  Moreover, 
it has recently been proposed that the oligosaccharides 
(glycans) that form the ABO system are fundamentally 
correlated to a myriad of different biochemical functions in the 

.  As the glycome is comprised of many 
glycans often attached to proteins and lipids as a result of 
multiple competing enzymatic activities, it has often been 
neglected as too complex to study (41).  But, the technology is 
now available to start looking into these critical molecules.  
Cell surface glycans (in the form of a dense coat called the 
glycocalyx), extracellular matrix-related and secreted protein 
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glycans seem to be essential for life, co-opting for innumerable 
intrinsic functions (42).  Extensive reviews of literature and 
advances in the field of glycobiology have confirmed the 
multifaceted features and physiologic functions of these 
molecules (43). 
 

Further layers of variability may be added if considering other 
HBGAs, such as P1PK, Li, GLOB, FORS, etc., though these 
are limited in their presence (expression) to only some lipids 
(glycosphingolipids [GSL]) and have a low incidence of 
variation (apart from P1/P2) (44).  A final layer of variability 
can be seen in the presence or absence of the Rhesus factor.  
Although the Rhesus (Rh) factor is not a glycan but rather a 
protein, or, better still, a glycoprotein, its physiologic role is 
yet largely unknown (45).  These glycoproteins are of 
particular importance since they are not only expressed on 
erythrocytes, but a few Rh protein homologues were 
discovered present in human and mouse nonerythroid tissues 
(46).  
 

ABO Blood System 
 

Modern Biomedicine has placed its core on the concept of the 
uniformity of the human body (i.e., the human body of each 
individual can be normalized, for all intents and purposes) to 
standardized and universal biotechnological interventions 
[(47), pp. 1-2].  The dominance of the natural science model of 
explanation in biomedicine is manifested in a rational 
management of disease through the almost total use of 
technological interventions for the study and practice of 
medical care [(48), pp. 7-14].  The ABO blood system 
originates from the technological sophistication of biomedicine 
following the discovery of plant lectins and the relative 
development of lectinology as a field of scientific investigation 
(49). 
 

Lectins are thus important molecules which have been first 
proposed as a possible mechanism for the successes of the 
BTD (50).  Many plant lectins are known to be resistant to gut 
proteolysis and displaying biological activity (binding to small 
intestine) to varying degrees (51).  But this explanation, 
coupled with the limited presence of biologically active lectins 
foods and in animals, could not explain all of the vast amount 
of effects noticed with dietary interventions (52).  Another 
mechanism was warranted and was provided with the rise of a 
new science, glycobiology, aided by the necessary advances in 
technology.  Dietary glycans have therefore been proposed as 
key players in the mechanism of BTD due to their ubiquitous 
nature, unique biochemistry and resiliency in the GI tract (14). 
Glycans on cell membranes are implicated in the formation of 
lipid rafts, which are assemblies known to be responsible for 
initiating many signal transduction pathways, including those 
for immunity (53).  The ABO determinants, in particular, were 
shown to stabilize sialylated clustered saccharide patches 
(similar to lipid rafts) on the plasma membranes in a 
differential manner depending on the glycotope (antigen) (54).  
ABO antigens can therefore alter the presentation of other cell 
surface glycans (such as sialic acids) to cognate-binding 
proteins (endogenous lectins) which play important roles in a 
variety of physiologic and pathologic interactions (55).  The 
end result is that different ABO antigens will create a 
differential biochemical, immunological and psycho-
physiologic response (depending on the individual’s biotype) 
to various internal and external stimuli (15). 
 

It has been anticipated that the symbiotic relationship between 
the host, and functionally associated prokaryotes, eukaryotes, 
and viruses in the context of an environment is the holobiont 
(56).  Both endogenous factors, such as host genetics, and 
exogenous environmental conditions, including stress, 
hygiene, diet and infections throughout life have a vital part in 
outlining the unique composition of an holobiont’s 
microbiome (57).  An often-underestimated parameter in the 
determination of the microbiota composition is host genetics 
and especially the biochemical environment of the niches 
created by the host.  
 

Glycans, again, come into play in this new paradigm as their 
interaction with the microbiota is recognised in extant 
literature (58).  Indeed, the biological marker most 
representative of host genetics is the ABO blood group, a 
glycan.  There are two main reasons for this.  The first is the 
ubiquitous presence ABO glycan antigens in human tissues.  
The second because the human microbiota, irrespective of 
location and niche, interacts with the human cells through a 
complex system of glycan-lectin binding (bacterial glycans 
with human lectins and vice versa) (52, 59, 60).  It has been 
shown extensively almost two decades ago that microbes align 
to ABO and histo-blood group antigens (HBGA, like Lewis 
and Secretor1 type) present in the GI environment through 
specific microbial receptors (2, 61).  The structural diversity of 
these glycans seems to play major role in susceptibility and 
resistance to infections and infectious diseases (5, 62).  
Furthermore, microbes have glycans on the surface (like all 
cells) with ABO-like functions (maybe not structures) so that 
gut microbiota act as an organ having the same blood group 
antigens as the host (63).  Consequently, these microorganisms 
can be recognized by the host’s immune system, in an ABO-
dependent manner.  Demonstration of this key event comes, 
for example, from studies on microbial exposure and 
formation of anti-ABO antibodies (64). 
 

BTD and Microbiota 
 

Apart from the possible associations discovered over the years 
between the ABO blood types and physiologic (athletic 
performance) (65) and psychologic factors (66), ABO 
biotypology resulted important for identifying than 
individual’s diet.  The first proposal of a dietary system based 
on blood grouping, the BTD involved not only differences in 
susceptibility of disease but also exercise format and lifestyle 
(50).  From that time, BTD and relevant lifestyles were 
empirically practiced and studied by some physicians with 
positive results (67).   
 

BTDs have emerged following the realization that certain 
foods have special biochemical constituents which elicit 
differential immune or inflammatory responses in different 
individuals.  Dietary glycans have been recognized as the 
prime source of these different reactions in ABO blood groups 
(52).  These can mimic ABO epitopes and thereby trigger 
tolerance or immune responses or be preferentially utilized by 
resident gut microbes in a healthy or deleterious manner (15).  
Specifically, oligosaccharides present on glycoproteins and 
glycolipids are not digested by our enzymatic toolkit and will 
be the object of hydrolytic attack by the much more vast 
bacterial CAZymes (68) 

                                                 
1 Secretor is not a true blood group system, but regulates the expression of ABO and 
Lewis carbohydrates in tissues and exocrine secretions it must be considered an 
alloantigen system. 
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It is here where, the microbial community inside the each 
human holobiont differs not just in terms of anatomy and 
physiology as outlined above, but also biochemically.  
Biological diversity, as the result of genetic variations, other 
resident microorganisms and diseases (acting as essential 
environmental factors) may have important implications in 
susceptibility to diseases (cancer, infections, etc.) and in innate 
and adaptive immune responses (7).  The point in common 
with ABO and microbes is their affinity towards blood group 
glycotopes.  Through interactions with genetically predefined 
ABO glycans, the complex ecological community of the 
microbiota has an intrinsic relationship that can influence 
normal physiology and contribute to disease susceptibility (14, 
57, 69).  Essentially, each ABO group has its own distinct 
microbial communities (host-associated microbiota) that 
define the holobiont, biochemically and patho-physiologically.  
Ultimately, HBGA (ABO glycans) are central in personalized 
medicine and in our understanding of the complex network of 
genes, oncodevelopmental biological processes, and disease 
mechanisms (44). 
 

ABO Phenotypical Diversity of the Holobiont 
 

One of the many characteristics of the blood group 
constitutions is the difference seen in stomach acidity between 
different ABO blood groups.  Already in the 1950s, 
researchers noted relationships between ABO blood groups 
and gastric secretory function (acid and pepsin production) 
(70).  Although initially the association was seen at a disease 
level (and hence on a susceptibility basis), it was soon realized 
that ABO blood grouping and Secretor status were beyond the 
simple connection with the type of gastric or peptic ulcer (71, 
72).  It became soon clear that the acidity and volume of basal 
acid secretion was linked to the ABO blood group with the 
type O having the highest values, overall (73).  This effect may 
be due to an increased serum level of pepsinogen (as a marker 
of gastric secretion) in blood type O with respect to type A 
individuals (and higher males than in females) (74).  Similar 
results were found with pepsinogen A serum levels (75). 
 

So, it is likely that gastric hypersecretion, a major factor in 
duodenal ulcer, has a constitutional basis-anatomic, genetic, or 
physiological (76).  This fact has obviously important 
consequences with respect to the holobiont concept of biology 
of man and related medical applications.  Although body 
habitus has been correlated to both basal acid output (BAO) 
and maximum acid output (MAO), these was found to be 
definitely higher in type O than in other ABO blood groups 
(77).  The same is true when considering type O individuals 
with non-secretor status having higher acidity (hyperacidity) 
than secretor subjects (78).  Moreover, the increased total 
pepsin production, as noted earlier, in blood type O may play a 
minor role in the pathogenesis of peptic ulcers but has to be 
viewed in light of its enzymatic function coupled with 
hyperacidity (79).   
 

The acidity and the pepsin/pepsinogens work together in the 
context of the stomach’s role in chemically breaking down 
food and, specifically, denaturing proteins (80).  Pepsin is a 
proteinase that hydrolyses the amide bonds within proteins in 
the presence of acid, like gastric juice (81).  Pepsinogen, 
secreted by chief cells (stimulated by gastrin) needs high 
acidity conditions (hydrochloric acid produced by the parietal 
cells, stimulated again by gastrin) to be transformed into 
pepsin, the main gastric protease (82).  Therefore, pepsin and a 

highly acidic environment are fundamental in denaturing 
proteins (likely from animal sources).  A simple comparison of 
the stomach pH across animals by taxonomic group, clearly 
identifies humans with an average gastric pH of 1.5 at the level 
of facultative scavengers and surely within the domain of 
generalist carnivores (83).  Hence, the higher the acidity of the 
stomach, like in the case of vultures, the better the animal is 
equipped to consume carrion without suffering any apparent 
ill-effects from the toxic metabolites excreted by microbes 
decomposing the carcass (84).  Apart from the role of 
disinfection (a pH < 3 is bactericidal), a highly acidic stomach 
is conceivably more helpful for denaturating proteins, as 
gastric acid activates pepsinogen into pepsin to initiate protein 
digestion (85).  Also, pepsin is biologically active at pH < 4, 
since gastric refluxate becomes caustic at this pH range and 
translates into erosive esophagitis (86).  Finally, the lower 
stomach pH of type O subjects, coupled with greater quantities 
of pepsin/pepsinogen, translates into a more carnivore 
constitution (requiring to digest more proteins). 
 

CONCLUSIONS 
 

Recent advancements in scientific understanding continuously 
confirm the truth of the definitions of biotypes exclusive to 
each individual.  Especially, the holobiont concept opens up 
new prospects of understanding human health and nutrition 
(16).   
 

The interactions between microbiotas and their hosts 
(wherever they reside in the host’s body, blood, brain or gut) 
characterise the holobiont as a unique and single biological 
entity (87, 88).  This uniqueness is defined by the presence of 
special glycans that form the ABO blood group antigens, 
which separates each human being into four distinct groups.  
Even more exceptional is the variability present inside this 
typology which explains the diverse reactions that each 
individual experiences with the same foods. 
 

A few examples of this variability has been presented as 
already understood and appreciated in medical literature.  The 
main example, the higher gastric secretion output of type O 
blood group persons, shows how diversified human beings 
really are and how they can be suitably grouped into categories 
(biotypes) for the sole purpose of identifying disease 
susceptibility and possibly host-microbial interactions. 
 

Hence, the need for a more tailored approach of medicine is 
paramount and is actually materializing as it slowly shifts its 
focus from a materialistic to a multi-omics viewpoint 
(personalized medicine) (10).  Medicine should embrace the 
hologenomic perspective that a systems-level framework for 
host biology is necessary to explain the complex etiologies of 
diseases, giving rise finally to precision medicine (9). 
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