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INTRODUCTION 
 

Inventory is very essential in business such as manufacturing 
goods, selling goods etc. The inventory level should be 
maintained to avoid loss and increase the business profit. 
Uncertainties and imprecision is inherent in real inventory 
problems. This can be approached by probabilistic methods. 
But there are uncertainties that cannot be appropriately treated 
by usual probabilistic models. To define inventory 
optimization tasks in such environment and to interpre
optimal solution, fuzzy set theory is considered as more 
convenient than probability theory. Many researchers have 
done their research work in fuzzy inventory models by 
considering the parameters as fuzzy number and defined 
various methods to get optimum cost. In this research work we 
get better optimum solution when compared to previous 
available methods. 
 

The structure of this paper is as follows: Section 2 gives 
preliminaries that are essential for our work. Section 3 discusses 
an inventory model in crisp and fuzzy sense. Section 4 compares 
crisp model and fuzzy model (triangular trident fuzzy number) 
using a numerical example. Section 5 gives sensitivity analysis. 
Finally section 6 concludes this research paper.
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                             A B S T R A C T  
 

 

The aim of this research work is to find minimum cost and optimum time period in fuzzy 
inventory models. For this objective, the parameters in the inventory models are considered 
as triangular trident fuzzy numbers. Numerical example is worked out to explain the 
concept. Sensitivity analysis is also provided in this paper.
 
 
 
 
 
 
 
 

      
 
 
 

Inventory is very essential in business such as manufacturing 
goods, selling goods etc. The inventory level should be 
maintained to avoid loss and increase the business profit. 

inherent in real inventory 
problems. This can be approached by probabilistic methods. 
But there are uncertainties that cannot be appropriately treated 
by usual probabilistic models. To define inventory 
optimization tasks in such environment and to interpret 
optimal solution, fuzzy set theory is considered as more 
convenient than probability theory. Many researchers have 
done their research work in fuzzy inventory models by 
considering the parameters as fuzzy number and defined 

cost. In this research work we 
get better optimum solution when compared to previous 

structure of this paper is as follows: Section 2 gives 
preliminaries that are essential for our work. Section 3 discusses 

crisp and fuzzy sense. Section 4 compares 
triangular trident fuzzy number) 

using a numerical example. Section 5 gives sensitivity analysis. 
Finally section 6 concludes this research paper. 

Preliminaries 
 

Definition  
 

Let X be a nonempty set. Then a fuzzy set A in X (ie., a fuzzy 
subset A of X) is characterized by a function of
X    [0,1]. Such a function µ

function and for each xϵX ,

membership of x (membership grade of x) in the fuzzy set A.

In other words, A fuzzy set A
~

µA: X   [0,1]. Ғ(X) denotes the collection of all fuzzy sets in 
X, called the fuzzy power set of X.
 

Definition  
 

A fuzzy set is a fuzzy number if it satisfies the following four 
conditions 

 

1. It is a convex set 
2. It is normalised  
3. It is defined on the real number R
4. It is piecewise continuous

 

Definition (Triangular trident Fuzzy Number )
 

A fuzzy number A =(a1q, a2q, a
fuzzy number if its membership function is given by 
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The aim of this research work is to find minimum cost and optimum time period in fuzzy 
models. For this objective, the parameters in the inventory models are considered 

as triangular trident fuzzy numbers. Numerical example is worked out to explain the 
concept. Sensitivity analysis is also provided in this paper. 

Let X be a nonempty set. Then a fuzzy set A in X (ie., a fuzzy 
subset A of X) is characterized by a function of the form µA : 

[0,1]. Such a function µA is called the membership 

ϵX ,  x
A
~ is the degree of 

membership of x (membership grade of x) in the fuzzy set A. 

A
~

 =    Xxxx A  /,
 
where 

Ғ(X) denotes the collection of all fuzzy sets in 
X, called the fuzzy power set of X. 

A fuzzy set is a fuzzy number if it satisfies the following four 

It is defined on the real number R 
It is piecewise continuous 

Definition (Triangular trident Fuzzy Number ) 

, a3q) is called triangular trident 
fuzzy number if its membership function is given by  
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Definition 2.4.( α-cut for triangular trident Fuzzy number) 
 

The α-cut of triangular trident fuzzy number Aq is the closed 

interval                                                        
qA

    qqqqqq aaaaaa 23
3

212
3

2 ,   ,    α ]1,0[ . 

 
Definition 2.5 (Signed distance method) 
 

The formula for defuzzifying triangular trident fuzzy number 
using signed distance method  is  
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Definition (Graded Mean Integration Representation 
method) 
 

The formula for defuzzifying using gradient mean integration 
representation method is 

R=     
1
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Inventory model in crisp and fuzzy sense 
 

Assumptions 
 

1. The inventory system involves production of single 
item. 

2. Lead time is zero and shortages are not allowed. 
3. Demand is time dependent. 
4. Replenishment is instantaneous. 
 

Notations 
 

A -  set up cost per cycle 

A
~

 - fuzzy set up cost 
θ  - deterioration rate independent of time 


~

- fuzzy deterioration rate independent of time 
T -  cycle length 
P -  production rate 

P
~

 -  fuzzy production rate 
h -  holding cost per unit per unit time 

h
~

 - fuzzy holding cost per unit per unit time 
d - ` deterioration cost per unit  per unit time 

d
~

 -  fuzzy deterioration cost per unit per unit time 
D -  demand rate which depends exponentialy over time 

D
~

 -  fuzzy demand rate 
t1 -  duration of production 
I1(t) -   inventory level at time t, 0≤t≤t1 
I2(t) -  inventory level at time t, t1 ≤ t ≤ T 
C -  total cost for the period [0,T] 

C
~

- fuzzy total cost for the period [0,T] 

CdF

~
- defuzzified value of C

~
 

 

Description of Inventory model in crisp sense  
 

At t = 0, the inventory level is zero and it  increases in [0,t1] 
due to the production at the constant rate P. 
 

At t = T again it reaches the inventory level zero. This is due to 
demand and deterioration of the item.  This can be represented 
by the following figure 1 
 

 
 

Figure 1 
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For 0 ≤ t ≤ t1 
The differential equation governing the situation is  

)()( 11 tIDPtI
dt

d


 

 PtItI
dt

d
)()( 11  Ke-λt , where K is the initial demand 

and λ is the decreasing rate of demand. K > 0 and 0 < λ < θ 

tKePtItI
dt

d   )()( 11  

Now apply the initial condition I1(t) =0 when t = 0  we get 
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For t1 ≤ t ≤ T  
The differential equation governing the above condition is  

 )()( 22 tItI
dt

d
  Ke-λt , where K is the initial demand and 

λ is the decreasing rate of demand.  K > 0 and 0 < λ < θ. 
 

The solution of the linear equation after applying the condition 
I2 (t)= 0 at t = T is 
 
 
 
 
 
 

Holding cost can be calculated by using the formula












  

1 2

0 0

21 )()(.
t t

dttIdttIhCH

 

we get

 

  





















11
11

t
P

e
K

h T




 

The deteriorating cost can be found out by the formula 
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Total cost can be defined as 
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                    [9] 
The optimum value of T can be found out by differentiating  
with respect to T   
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Now equate the first derivative to zero to obtain optimum time 
period T* 
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Description of Inventory model in fuzzy sense 
Triangular trident fuzzy number 
 

It is not always possible to define certain parameters with 
certainty for which we fuzzify some parameters A , h, d , θ , P 
, D , K. 
 

We consider triangular trident fuzzy numbers for the above 
parameters as 
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To find the optimum value , we have to differentiate the above 
equation with respect to T 
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Now defuzzifying using signed distance method 
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Therefore we get the minimum total cost. 
 

Now let us find optimum solution of total cost by putting  
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we get the minimum total cost as 
 

 
 

Similarly defuzzifying using graded mean integration method, 
we get the optimum time period and minimum total cost as 
 

 
 
Numerical Example 

Crisp Model 

Suppose A = 54, h = 8, θ = 0.010, P = 550, d = 1.5, K = 500 

By using the formula (1) and (2), we get T* = 0.54 

And total cost C = 198.37 
 

Fuzzy Model 
 

Signed Distance method 
 

A = (20,26,32), h = (4,6,8), θ=(0.002,0.006,0.010), P 
=(500,550,600), d =(1,1.3,1.6) K=(450,500,550) 
Using (3) and (4) we get 
T*= 0.6 and total cost = 42.495 
 

Graded mean Integration method 
 

A = (20,26,32), h = (4,6,8), θ=(0.002,0.006,0.010), P 
=(500,550,600), d =(1,1.3,1.6) K=(450,500,550) 
Using (5) and (6) we get the optimum solution as 
T*= 0.56 and total cost = 46.41 
 

Sensitivity Analysis 
 

The following table shows the effect of change of each 
parameter in (3),(4), (5) & (6) 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

From the Table 1, we observe that increase in setup cost 
increases the time period and the total cost. Table 2 shows that 
if the deterioration cost increases then there is no rapid change 
in the time period and total cost.  
 
 
 

 
 
 
 
 
 
 
 
 
 

(20,26,32) (30,34,38) (50,52,54) (60,70,80)

Graded mean method 
T(years) 0.56 0.6406 0.7922 0.9191

Signed distance method 
T(years) 0.6 0.6997 0.8654 1.004

0

0.2

0.4
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T
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OPTIMUM TIME PERIOD FOR DIFFERENT VALUES OF FUZZY 
SETUP COST

Table 1 
 

A
~

 

Graded mean 
method 

Signed distance 
method 

T(years) 
Total 
cost 

T(years) 
Total 
cost 

(20,26,32) 0.56 46.41 0.6 42.50 
(30,34,38) 0.6406 53.08 0.6997 48.59 
(50,52,54) 0.7922 65.64 0.8654 60.09 
(60,70,80) 0.9191 70.25 1.004 69.72 

 

Table 2 
 

d
~

 

Graded mean method 
Signed distance 

method 

T(years) 
Total 
cost 

T(years) 
Total 
cost 

(1,1.6,2.2) 0.6406 53.08 0.6999 48.58 
(1,1.3,1.6) 0.6406 53.08 0.6997 48.59 

(1.3,1.7,2.1) 0.6405 53.08 0.6997 48.59 
(2,2.5,3) 0.6404 53.09 0.6997 48.59 

 

Table 3 
 


~

 

Graded mean 
method 

Signed distance 
method 

T(years) 
Total 
cost 

T(years) 
Total 
cost 

(0.002,0.006,0.010) 0.6406 53.08 0.6997 48.59 
(0.003,0.006,0.009) 0.6405 53.09 0.6996 48.6 
(0.005,0,010,0.015) 0.6403 53.10 0.6995 48.61 
(0.008,0.015,0.022) 0.6401 53.12 0.6993 48.62 

 

Table 4 
 

K
~ Graded mean method Signed distance method 

T(years) Total cost  T(years) Total cost  
(450,500,550) 0.6406 53.08 0.6997 48.59 
(400,425,450) 0.3592 94.66 0.3638 93.45 
(350,410,470) 0.3554 95.65 0.3630 93.65 
(200,230,260) 0.2935 115.83 0.2942 115.56 

 

Table 5 
 

h
~ Graded mean method Signed distance method 

T(years) Total cost  T(years) Total cost  
(2,7,12) 0.8086 42.05 1.16 29.26 
(4,6,8) 0.6406 53.08 0.6997 48.59 

(3,9,15) 0.6777 50.17 0.9069 37.49 
(10,14,18) 0.4077 83.38 0.4396 77.35 

 

Table 6 
 

P
~ Graded mean method Signed distance method 

T(years) Total cost T(years) Total cost 
(500,550,600) 0.6406 53.08 0.6997 48.59 
(550,575,600) 0.4573 74.35 0.4695 72.41 
(600,700,800) 0.3019 112.62 0.3078 110.48 
(625,705,785) 0.2946 115.42 0.2989 113.75 
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Graphical representation of Table 1
 

Since the deterioration rate is very minimum in our example 
problem, there is not much change in the time period and total 
cost if the deterioration rate of  material increases which is 
depicted in Table 3. If the production is l
demand is less then there is huge rise in total cost and the time 
period of one cycle is very minimum which is shown in Table 
4 and Table 6. Table 5 shows that if the holding cost of 
material for placing in the inventory increases then the c
incurred for the cycle also increases. 
 

 

 
 

 

 

 

Graphical representation of Table 2
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Table 1 

Since the deterioration rate is very minimum in our example 
problem, there is not much change in the time period and total 
cost if the deterioration rate of  material increases which is 
depicted in Table 3. If the production is large while the 
demand is less then there is huge rise in total cost and the time 
period of one cycle is very minimum which is shown in Table 
4 and Table 6. Table 5 shows that if the holding cost of 
material for placing in the inventory increases then the cost 
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CONCLUSION  
 

In this paper an inventory model is considered. The description 
for the model is given in crisp and fuzzy environment. The 
crisp model of the problem was already discussed in [9] . In 
Paper [9], the fuzzy numbers we 
trapezoidal fuzzy numbers. In our present paper, we used 
triangular trident fuzzy number. Signed distance method and 
graded mean integration method are used for defuzzification. 
We observe that, we obtain  minimum total cost and opt
time period while using Triangular trident fuzzy number. 
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