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INTRODUCTION 
 

The Central Limit Theorem is one of the most profound and 
important results in mathematics.  It tells us that under fairly 
general conditions, the net result of many actions or events can 
reliably be described by a normal distribution.  Some common 
examples are: 
 

 Height of male or female freshman students at a college 
(result of the combined action of many independent 
genetic and environmental factors). 

 Time to make a certain long trip by automobile (result 
of weather, road conditions, accidents, and other 
independent factors) 

 Electricity consumption in a city (result of a large 
number of independent consumers) 

 

Other cases which would seem to fit (but in fact do not) ar
 

 Height of ocean waves (result of the sum of many 
different forces) 

 Stock market prices (result of many trades by 
independent investors) 

 Length of Internet messages (result of many different 
activities by disparate users) 

 

The Central Limit Theorem is used to estimate the distribution 
of some quantity when it is the result of many small 
contributions from various sources.  The requirements for the 
Central Limit Theory to be applicable are:i 
 
 
 
 
 
 

International Journal of Current Advanced Research
ISSN: O: 2319-6475, ISSN: P: 2319-6505, 
Available Online at www.journalijcar.org
Volume 8; Issue 06 (E); June 2019; Page No.
DOI: http://dx.doi.org/10.24327/ijcar.2019
 

Copyright©2019 Thomas B. Fowler. This is an open access article distributed under the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

Article History: 
Received 06th March, 2019  
Received in revised form 14th  
April, 2019 
Accepted 23rd May, 2019 
Published online 28th June, 2019 

 
Key words: 

 

Heavy tails, Central Limit theorem, Random 
variables, Financial modeling 

*Corresponding author: Thomas B. Fowler
Adjunct Professor of Engineering George Mason University 
Fairfax, VA USA 

 

 

 

 
 

 
 

HEAVY TAILS AND THE FAILURE OF THE CENTRAL LIMIT THEOREM

Thomas B. Fowler 
 

Adjunct Professor of Engineering George Mason University Fairfax, VA USA
   

                             A B S T R A C T  
 

 

Heavy-tailed distributions have become very important in fields as diverse as 
telecommunications and economics. They often occur in situations where one would expect 
that the Central Limit Theorem should apply.  This article investigates why the Central 
Limit Theorem fails, and shows one mechanism by which heavy
This is by addition of what the article defines as “hypercorrelated” random variables.  The 
article also shows that heavy-tailed behavior cannot arise due to addition of linearly related 
random variables.  The failure of the Central Limit Theorem to be applicable in many areas 
where it has traditionally been assumed to apply has important real
especially in finance and financial modeling.   
 
 

       
 
 
 

one of the most profound and 
important results in mathematics.  It tells us that under fairly 
general conditions, the net result of many actions or events can 
reliably be described by a normal distribution.  Some common 

ale freshman students at a college 
(result of the combined action of many independent 

Time to make a certain long trip by automobile (result 
of weather, road conditions, accidents, and other 

ity consumption in a city (result of a large 

Other cases which would seem to fit (but in fact do not) are 

Height of ocean waves (result of the sum of many 

Stock market prices (result of many trades by 

Length of Internet messages (result of many different 

The Central Limit Theorem is used to estimate the distribution 
of some quantity when it is the result of many small 

s.  The requirements for the 

1. Variables summed must be independent.
2. All variables must have finite mean and variance
3. No variable can make an excessively large 

contribution to the sum
 

Despite its success in many instances, the Central Limit 
Theorem is known to fail as a descriptive tool in cases where 
its applicability seems assured.  In man
find that we are dealing with heavy
decisions made on the basis of normal distribution 
characteristics often lead to catastrophic results.  Perhaps the 
most famous recent example is the meltdown of a hedge fun
Long Term Capital Management, in 1998.  The fund assumed 
that certain currency movements would be governed by the 
normal distribution on account of the (presumed) applicability 
of the Central Limit Theorem.  In reality, a set of movements 
occurred which, according to the fund managers, was a “10 
sigma event”, triggering huge leveraged losses which nearly 
destabilized the global financial system.
events do not occur, since their probability is 7.62 x 10
Indeed, if the event in question is measured on a daily basis, 
which includes settlement of most market
event would occur once every 1.31 x 10
corresponds to about 3.6 x 10
magnitude longer than the age of universe.  W
was that a heavy-tailed distribution, not a normal distribution, 
governed the phenomenon.   
 

Another case of great interest in the telecommunications arena 
is the distribution of the file size of Internet messages.  Indeed, 
many parameters associated with Internet traffic are governed 
by heavy-tailed distributions, including page requests/site, 
reading time per page, and session duration.
distributions cause serious problems in the design of IP
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tailed distributions have become very important in fields as diverse as 
telecommunications and economics. They often occur in situations where one would expect 

should apply.  This article investigates why the Central 
Limit Theorem fails, and shows one mechanism by which heavy-tailed behavior can arise.  
This is by addition of what the article defines as “hypercorrelated” random variables.  The 

tailed behavior cannot arise due to addition of linearly related 
random variables.  The failure of the Central Limit Theorem to be applicable in many areas 
where it has traditionally been assumed to apply has important real-world consequences, 

Variables summed must be independent. 
have finite mean and variance 

No variable can make an excessively large 
contribution to the sum 

Despite its success in many instances, the Central Limit 
Theorem is known to fail as a descriptive tool in cases where 
its applicability seems assured.  In many of these cases, we 
find that we are dealing with heavy-tailed distributions, and 
decisions made on the basis of normal distribution 
characteristics often lead to catastrophic results.  Perhaps the 
most famous recent example is the meltdown of a hedge fund, 
Long Term Capital Management, in 1998.  The fund assumed 
that certain currency movements would be governed by the 
normal distribution on account of the (presumed) applicability 
of the Central Limit Theorem.  In reality, a set of movements 

, according to the fund managers, was a “10 
sigma event”, triggering huge leveraged losses which nearly 
destabilized the global financial system.ii  Of course, 10 sigma 
events do not occur, since their probability is 7.62 x 10-24.  

uestion is measured on a daily basis, 
which includes settlement of most market-based accounts, the 
event would occur once every 1.31 x 1023 days.  This 
corresponds to about 3.6 x 1020 years—roughly 10 orders of 
magnitude longer than the age of universe.  What happened 

tailed distribution, not a normal distribution, 

Another case of great interest in the telecommunications arena 
is the distribution of the file size of Internet messages.  Indeed, 

ociated with Internet traffic are governed 
tailed distributions, including page requests/site, 

reading time per page, and session duration.iii  Heavy-tailed 
distributions cause serious problems in the design of IP-based 
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systems, because the usual queuing theory methods employed 
to determine the required size of network components to meet 
performance specifications break down when variance and 
higher-order moments cannot be calculated. It has been 
necessary to develop special techniques, such as the Transform 
Approximation Method (TAM) in order to cope with this 
problem.iv,v  The TAM utilizes the fact that one does not need 
actual infinite times and infinite variances, but can utilize finite 
approximations to get useful results. 
 

What goes wrong, and why?  Which of the three conditions is 
the problem?  How can heavy tails emerge from sums of 
small-contribution random variables?  We must examine the 
three conditions to determine which is likely to fail in practical 
cases, and how such a failure would manifest itself.  Clearly 
the second condition is not of much interest because if the 
mean and variance of one or more components do not exist, we 
already have a heavy tail to all intents and purposes.  Nor is the 
third likely to be of great interest either, because we want the 
heavy tails to emerge from the sum of many small 
contributions, not one big one.  So the first condition would 
seem to be an ideal candidate, because correlated variables 
presumably could have large tails.  Presumably feedback 
mechanisms of some type give rise to the larger-than-expected 
probabilities of events.  However, it is not obvious that this is 
the cause, because adding random variables with the 
distributions that are just multiples of each other (100% 
correlated) just yields a similar distribution with different 
mean and variance, but not a heavy tail.  Thus more is needed 
than simple correlation.  Specifically, what is needed is some 
type of nonlinear feedback mechanism which can yield large 
changes.  Thus the relationship among the variables being 
summed would include this kind of nonlinear feedback, and 
that would ultimately generate the heavy tails.   
 

Heavy-tailed Distribution and Infinite Variance 
 

The size of files sent over the Internet has been determined to 
have what is known as a “heavy-tailed” probability 
distribution.vi That is, the probability of a given file length 
occurring falls off very slowly with increasing file length, 
unlike ordinary distributions, where the rate of fall-off is much 
faster.  Technically, given a probability distribution function 
f(x), if for large x values, its cumulative distribution function 
F(x) has the property that its complementary distribution 
 

                          
 xxF 1)(1  

 

where 01   and. ]2,0[ , then the distribution function 

is said to be heavy-tailed because it falls off very slowly with 
increasing values of x.vii,viii  In turn, this has an important 
consequence.  Setting =2 and differentiating above equation,  
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follows that the variance is determined by  
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That is, the Variance is Infinite 
 

The physical significance of infinite variance can be readily 
understood.  Recalling that variance measures central 
tendency, for any finite variance, values are known to be 

clustered around a central measure, the mean.  Increasing the 
coarseness of the horizontal scale will result in the distribution 
appearing more “peaked,” i.e., clustered around the mean.  
However, in the case of infinite variance, there is no such 
clustering, and regard-less of the scale on which measurements 
are made, there is no change in their central tendency — in 
effect, all scales look the same.ix  Physically, this means that it 
is difficult or impossible to put limits on the values of random 
variable that one may observe.  Such values can become 
arbitrarily large in absolute value with a much higher 
frequency than is the case with better-behaved distributions 
such as the normal distribution. 
 

The simplest heavy-tailed distribution (and the most famous in 
packet network analysis) is the Pareto distribution, [7] which 
has the general form  
 

1)(
)(

0,,1)(

aa

a

a

a









xk
dx

xdF
xp

kxk
x

k
xF

 

 

As a  decreases, the “heavy-tail” effect increases.  For a< 1, 
the variance becomes infinite.  This distribution is a type of 
negative power law distribution, similar to the one discussed 
above. 
 

Certifying infinite variance in practical cases is very difficult.  
In many cases, infinite variance is a much stronger condition 
than necessary; often a very large variance is enough to cause 
significant financial, queuing, or other problems.  For such 
cases, the ratio of the standard deviation to the mean can 
become quite large.  A common way to identify heavy tails is 
to look for a falloff of the density function that takes the form 
of a power law (straight line on a logarithmic plot).  This can 
be easily recognized (see Figure 1). 
 

 
 

Figure 1 Comparison of normal and Pareto distribution with respect to falloff 
for large values of x.  Note the approximately linear power law behavior of the 

Pareto distribution for larger values along the abscissa. 
 

Failure of the Central Limit Theorem 
 

To understand how the failure of Central Limit Theorem 
manifests itself, and why more is required than simple 
correlation of random variables added, consider the following 
two cases: 
 

Random variables X, Y are completely correlated, i.e., � = 1.  

In that case, baXY  .  A typical data set might be: 
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X 1 2 3 4 
Y 2 4 6 8 

Here XY 2 . 
 

Random variables X, Y which are independent, but which have 
similar distributions: 
 

X: (,2) 
Y: (2, 42) 
 

In this case, though mean values are related as XY  2 , 

correlation  = 0. 
 

Now observe what happens when these are added.  Let 

YXZ  .  Then for the two cases: 
 

YXZ   since expected value is always additive. Thus 

XXXZ  32  
 

For the variance we have 
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Then Var (Z) can be calculated as 
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For the above case this becomes 
 

XXXYXZ  32  
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Note that in the calculation for variance of the correlated 
variables, the middle term E(2XY) does not drop out as it 
would for independent variables, since in general for 

correlated variables )()()( YEXEXYE  .  In the case of 

independent variables we have 
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In effect, this says that the standard deviation scales at the 
same rate as the mean.  Thus the shape of the distribution is 
unchanged, and specifically, it does not exhibit the flattening 
required for a heavy tail. 
 

But if the random variables are independent, )(ZE is the same 

but  
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That is, standard deviation scales as 
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2
, which is less 

than the rate at which the mean scales.  This implies that the 
shape of the distribution is being compressed—exactly the 
opposite behavior to that required for heavy tails.  Naturally 
such a result is just what we would expect, since the Central 
Limit Theorem governs this case. 
 

In general, comparing these, we have 
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This is true for variables regardless of their distribution, so it 
shows that heavy tails cannot arise by linear combinations of 
correlated random variables.  The new summed distribution 
has the same shape as the old, only scaled up.  When converted 
to a pdf, it will not have a heavy tail, defined as variance 
tending to ever larger values in the pdf.  Obviously, adding 
independent random variables will not lead to heavy tails 
because the standard deviation scales at a smaller rate than the 
mean, so the distribution tends to contract.  The two situations 
are illustrated in Figures 2 to 4. 
 

 
 

Figure 2 Two correlated random variables and their sum 
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Figure 3  Two independent random variables and their sum 
 

 
 

Figure 4  Rescaled sums compared to original random variable X.  Note that 
the correlated sum and X overlap. 

 

Hypercorrelation 
 

However, the fact that the variance of a sum of correlated 
random variables is greater than the corresponding sum for 
independent random variables suggests the next step.  If 
normal correlation cannot create heavy tails, but only replicate 
the shape of the original distribution, perhaps some type of 
amplified correlation can do so.  One way in which an 
“amplification” can occur in correlated distributions is if a 
power-law relationship exists for the variables.  So we shall 

consider relationships of the form naXY  , and we will 

define as the standard correlation coefficient  for the 

natural log of variables Y, X where the values of Y and X have 
been fitted using an exponential regression, so that a and n are 

known.  That is, will measure the correlation for 

XnaY lnlnln  .  This is equivalent to finding for W 

and Z where ZbaW '' .  Then the hypercorrelation 

between X and Y is given by '*  n .  Thus if  is 0, there 

is no hypercorrelation.  Conversely, if  is 1, there is 

hypercorrelation of n. 
 

It is clear that n measures the strength of the amplification 
effect, i.e., how much faster Y increases than X.  In real-world 
situations, we would want to assume a distribution for a and a 
distribution for n, and then determine under what 
circumstances the heavy-tailed behavior would arise.  This 

could be done by fitting the tail of the summed hypercorrelated 
random variables to a Pareto distribution.   
 

Specifically, let us assume that we have a large number of 

hypercorrelated variables Yi, such that in
ii XaY  , each of 

which has an associated hypercorrelation 
*
i .  We should be 

able to show that if a large number of Yi’s are summed, 





k

i
i k

1

* /  increases, and standard deviation./mean continues 

to increase, and thus heavy tails emerge since the sum of the 
Yi’s is bounded on the lower end. 
 

Simulation 
 

Efforts to verify the creation of heavy-tailed distributions by 
means of hypercorrelation have thus far been done by means 
of numerical simulation.  In these experiments, 
hypercorrelated random variables are generated, and then 
added.  The resulting distributions are then analyzed for heavy-
tailed behavior.  Such behavior is quite obvious on logarithmic 
plots, especially when compared to usual result of adding 
random variables, namely a normal distribution.  The 
procedure is as follows: 
 

1. Assume a functional form of jn

iij XaY   

2. Generate 5 normally distributed random values for the 

ia , and for each of those, 10 normally distributed 

random values for the jn .   

3. Generate a normally distributed set of values for X. 

4. Calculate the ijY  terms and add, 



10

1j
iji YY  

5. Calculate the distribution of the sum 



5

1i
iYZ  

6. Fit a normal and a Pareto distribution to the distribution 
for Z 

7. Record Pareto parameters and average hypercorrelation 
8. Repeat for new set of a, n values with different mean, 

standard deviation. 
 
Some typical graphs resulting from step 6 are shown in Figures 
5 and 6 on both linear and log scales.  These graphs illustrate 
clearly the heavy-tailed behavior of the summed 
hypercorrelated variables, as compared to a normal 
distribution.  Note that in Figure 5(a), the normal and 
hypercorrelated distributions look almost identical until well 
past the mean; this could easily fool an observer into thinking 
that the process in question was really normally distributed 
when in fact it has a heavy tail.  The difference, of course, is 
immediately obvious when the distribution is plotted on a 
logarithmic scale.  A smaller value of n, which corresponds to 
less hypercorrelation and presumably less heavy-tailed 
behavior, gives correspondingly a higher value for the Pareto 

constant a.  Note also in Figure 6 that the degree of heavy-
tailed behavior is much lower than in Figure 5, as illustrated by 
the decreased divergence between the hypercorrelated (and 
Pareto) curves and the normal curve.  This result is expected, 
since the exponent n in the runs for Figure 5 is 6, whereas it is 
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2 for the runs of Figure 6.  As the exponent n approaches 1 
from the upper side, the heavy-tailed behavior will disappear. 

 
 

(a) Linear scale 
 

 
 

(b) Log scale 
 

Figure 5 Summed hypercorrelated variables.  Distribution of a: : =10, =3.  Distribution 
of n: =6, =2.  Average hypercorrelation value: 5.923; Pareto constant a=2.1. 

 

 
(a) 

 

 
(b) 

Figure 6  Summed hypercorrelated variables.  Distribution of a: =10, =3 
Distribution of n: =3, =1.  Average hypercorrelation value: 1.868; Pareto 

constant a=3.6. 

A summary plot of many runs, given in Figure 7, shows the 
relationship between average hypercorrelation value and 
Pareto constant a.  As expected, the relationship is inverse but 
well-defined, as indicated by the regression line. 
 

 
 

Figure 7 Relationship between hypercorrelation n and Pareto constant � 
based on simulation runs. 

 

Similarly, the ratio of standard deviation to mean varies from 
1.39 to 18.31 over the range of n.  These results furnish a 
demonstration of the emergence of heavy-tailed behavior by 
means of hypercorrelation.  Naturally, no claim is made that 
all instances of heavy tailed distributions arise in this way, 
only that this is one way in which the Central Limit Theorem 
can fail, resulting in heavy-tailed distributions.   
 

How Heavy Tails Might Arise Through Hypercorrelation 
 

It is useful to consider how heavy tails due to hypercorrelation 
might arise.  First, consider the case of investors, whose 
behavior is known to be subject to crowd influences (“if 
everyone is doing it, I should too!”).  So Investor 1 says, “I’m 
buying 10 shares of company A.”  Investor 2 says, “I see what 
investor 1 is doing, and I like it, so I’m going to beat him and 
buy 100 shares of company A.”  Investor 3 says, “Everybody 
else is doing it, so I’m going to beat them and buy 1,000 shares 
of company A!”  Thus if the number of shares bought is 
increasing by a factor, so that we have N, N2, N3, etc., all 
added together, then we have a hypergeometric distribution 
sum and a heavy tail condition.  Heavy-tailed behavior can be 
particularly dangerous in today’s financial environment, where 
the amount of derivatives in existence is estimated at about 
$500 trillion—about 10 times the world’s annual GDP.  If 
hypercorrelated linkages exists in some of the derivatives—
and very little is known of how they would behave in a crisis 
situation—then the results could be catastrophic.  Since 
hypercorrelated behavior can mimic ordinary normal behavior 
under many circumstances, it might lie there undiscovered. 
 

In the case of Internet traffic, the psychology of users and its 
impact on traffic has not been well-studied, and the heavy-
tailed nature of the traffic may have multiple sources.  But 
some ideas come to mind.  If success breeds a desire for more 
of the same, for instance, if successful retrieval of one web 
page leads to requests for larger numbers by the same user, or 
pages with more information, a type of hypercorrelation will 
emerge.  As an example, let us consider how most commercial 
sales web sites are setup.  If a user is seeking information 
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about a product that may be of interest, he would first arrive at 
a summary page which gives highlights of the product.  Such a 
page is typically designed to load fast.  Then, the user might 
want to drill down a bit, and ask for a more detailed 
specifications page.  Later, he might ask for a product brochure 
download, or a page with photos or images of some type.  The 
ratio of file size here could easily be 1:5:25, or something on 
that order.  This would explain at least in part the heavy-tailed 
character of traffic, page requests/site, reading time/page, and 
session duration. 
 

Conclusion and Future Work 
 

Heavy-tailed probability density functions can arise through 
summations of hypercorrelated variables, which are variables 

of the general form naXY  .  The larger the value of n, the 
greater the degree of heavy-tailed behavior.  Distributions of 

such sums, 
i

iYZ , can often mimic normal distributions 

for certain values Z.  Therefore application of the Central 
Limit Theorem must be carefully monitored to ensure that 
hypercorrelation is not present.  Heavy-tailed behavior can be 
made more apparent by plotting the sums on a logarithmic 
scale.  This research only deals with the case of heavy-tailed 
distributions arising from sums of random variables; heavy 
tails may also originate in other ways.  Future work will 
concentrate on a more theoretical understanding of the 
emergence of heavy tails from hypercorrelated random 
variables.  It will also look at empirical reasons for the 
emergence of heavy-tailed behavior, to better understand the 
circumstances under which such behavior can be expected. 
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