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A R T I C L E  I N F O                              

 
 
 

INTRODUCTION 
 

The main aim of mine ventilation is to supply fresh air to 
designated areas, which increases underground oxygen 
concentration and removes underground contaminants 
effectively [1, 2]. It helps to create a safe 
working environment for mining. With the increasing of 
mining depth and the development of mechanization, the cost 
of safety operation, maintenance and management of a mine 
ventilation network increases continuously. The research and 
application of ventilation network optimization that aims at 
reducing energy consumption of mine ventilation are 
becoming more and more important. 
 

The main fans are responsible for providing the total air 
quantity required for the whole mine. However, more ofte
than not, certain working places in the mine requires different 
amount of air to be delivered [3]. One common way of 
achieving this is by the use of regulators to adjust the 
resistances of one or more airways. This will change the main 
fan’s operating points and thus influence their power 
consumption.  
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                             A B S T R A C T  
 

 

Underground mines are becoming deeper due to the depletion of shallower mineral 
resources. An effective mine ventilation network can save tremendous of electricity cost 
used by fans. This requires the ventilation system to be regulated so that the required 
airflow to the mine key areas are met with minimum power consumption.
ventilation networks are internal coupled strongly. The air
may be changed if only one of the branches air-flow is regulated. Such a problem becomes 
more complicated if multiple main fans are installed. The Hardy Cross method can 
determine the flow in pipe network systems where the inputs and outputs are known with 
iterative method. But it is difficult to find the optimum regulating scheme with iterative 
method such as Hardy Cross, because the inputs of the network systems are the regulating 
variables. They are not known or constant. This paper established a mine ventilation 
optimization model, and proposed a λ-PSO optimization algorithm to solve the model. By 
applying it to a typical mine ventilation network case, it is demonstrated that the proposed
algorithm can reach the global optimal solution in shorter computational time. It is 
recommended to incorporate the algorithm to commercial ventilation network analysis 
software to assist with cost effective ventilation planning.
 

 

The main aim of mine ventilation is to supply fresh air to 
designated areas, which increases underground oxygen 
concentration and removes underground contaminants 
effectively [1, 2]. It helps to create a safe and comfortable 
working environment for mining. With the increasing of 
mining depth and the development of mechanization, the cost 
of safety operation, maintenance and management of a mine 
ventilation network increases continuously. The research and 

ation of ventilation network optimization that aims at 
reducing energy consumption of mine ventilation are 

The main fans are responsible for providing the total air 
quantity required for the whole mine. However, more often 
than not, certain working places in the mine requires different 
amount of air to be delivered [3]. One common way of 
achieving this is by the use of regulators to adjust the 
resistances of one or more airways. This will change the main 

ints and thus influence their power 

In a complex ventilation network, there are several main fans 
and many different combinations of regulator adjustment 
solution to achieve the same airflow requirement on one 
specific airway. But these different combinations result in 
mine total resistance and total fans power consumption 
differences [4]. Optimization method can be used to
solution that use minimum total fans power. The optimization 
aim is to minimize the total power of the ventilation network 
by satisfying the demand for air flow in each branch, the 
balance law of air quantity and pressure, and the ability of 
resistance regulation on the branches. This is a nonlinear 
programming problem. The number of the unknown variables 
is more than that of the constraint equations, thus, it is an 
indefinite solution problem [5]. It will become more 
complicated if multiple fans ar
network. Thus, an effective solution for such problems is 
challenging and has attracted more research attention [6]. The 
nonlinear programming method in many previous studies 
require the derivative solution for a function, the 
matrixes, and the solutions are sensitive to the initial values. 
These make the method more complex and less effective [7
H Wang et al [10] attempted to solve the problem by firstly 
solve the required flow in each branch, and then find the
optimal regulator adjustment method that consumes the least 
fan power. However, as the problem is simplified to a local 
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Underground mines are becoming deeper due to the depletion of shallower mineral 
mine ventilation network can save tremendous of electricity cost 

used by fans. This requires the ventilation system to be regulated so that the required 
airflow to the mine key areas are met with minimum power consumption. But mine 

internal coupled strongly. The air-flow of all the other branches 
flow is regulated. Such a problem becomes 

more complicated if multiple main fans are installed. The Hardy Cross method can 
in pipe network systems where the inputs and outputs are known with 

the optimum regulating scheme with iterative 
method such as Hardy Cross, because the inputs of the network systems are the regulating 

This paper established a mine ventilation 
PSO optimization algorithm to solve the model. By 

applying it to a typical mine ventilation network case, it is demonstrated that the proposed 
algorithm can reach the global optimal solution in shorter computational time. It is 
recommended to incorporate the algorithm to commercial ventilation network analysis 
software to assist with cost effective ventilation planning. 

In a complex ventilation network, there are several main fans 
binations of regulator adjustment 

solution to achieve the same airflow requirement on one 
specific airway. But these different combinations result in 
mine total resistance and total fans power consumption 
differences [4]. Optimization method can be used to find a 
solution that use minimum total fans power. The optimization 
aim is to minimize the total power of the ventilation network 
by satisfying the demand for air flow in each branch, the 
balance law of air quantity and pressure, and the ability of 

ance regulation on the branches. This is a nonlinear 
programming problem. The number of the unknown variables 
is more than that of the constraint equations, thus, it is an 
indefinite solution problem [5]. It will become more 
complicated if multiple fans are applied in the ventilation 
network. Thus, an effective solution for such problems is 
challenging and has attracted more research attention [6]. The 
nonlinear programming method in many previous studies 
require the derivative solution for a function, the inversion of 
matrixes, and the solutions are sensitive to the initial values. 
These make the method more complex and less effective [7-9]. 

[10] attempted to solve the problem by firstly 
solve the required flow in each branch, and then find the 
optimal regulator adjustment method that consumes the least 
fan power. However, as the problem is simplified to a local 
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optimization problem, it is still a non-convex and nonlinear 
optimization model, which has the same shortcomings of the 
previous nonlinear programming method. 
 

With the development of intelligent optimization algorithms, 
genetic algorithms have been applied to solve such problems 
[11-14]. However, due to the limited exploration ability in the 
unknown spaces, it is more likely for the method to fall into 
the local optimal solution. In addition, its processing capacity 
for high-dimensional optimization problems is limited, which 
makes it computationally expensive to deal with ventilation 
network with large scale and complex structures. A 
hierarchical encoding method and a way to eliminate the 
infeasible solutions were proposed by Y Guo [15]. To shorten 
the computational time, she introduced the cultural particle 
swarm optimization algorithm (CPSO) to deal with this 
problem without considering the possible high dimensional 
combinatorial explosion issue [16]. She found that the PSO 
algorithm has the disadvantage of local convergence in solving 
high-dimensional constrained optimization problems [17], 
especially when there are large number of nonlinear constraint 
conditions [18].  
 

To overcome the disadvantage of the PSO algorithm in solving 
high-dimensional constrained optimization problems [19], a γ-
PSO ventilation network optimization algorithm was proposed 
in this paper. By using a broader range of solutions searching 
variable, this algorithm has the advantage of finding the global 
optimal solution and avoiding local convergence. We have 
used a mine ventilation network example with three main fans 
and compared the solution acquired by the γ-PSO with three 
other algorithms. Results showed that the γ-PSO algorithm is 
the fastest and the solution had the lowest power consumption. 
 

The optimization model 
 

The objective function of the ventilation network optimization 
is to minimize the ventilation energy consumption with the 
least branches regulated. Total fans power is the major 
component of energy consumption, thus, it is set as the 
objective function [20]: 
 

min �(��, ��, ��) = �� +�������
�∈�

 (1)

 

Where: L is fans quantity, FHj, FQj are air pressure and air 
quantity, respectively; j denotes the branch number. FR is the 
total number of resistance-adjusted branches 
 

The ventilation pressure and air quantity are governed by the 
Kirchhoff’s Laws of Flow [21]. It forms the constraint 
condition in the optimization model: 
 

1. Kirchhoff’s 1st Law: in the ventilation network, the 
inflow rate is equal to the outflow rate at any node at 
any time [22]. 
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Where: Ni is the total number of branches associated with node 
i in the network, Qj is the air quantity of branch j, and J is the 
number of nodes in the ventilation network. 
 

2. Kirchhoff’s 2nd Law: in a ventilation network, the 
algebraic sum of various energy is zero in any closed 
circuit [23]. 

 

������� + ∆�� − �� − ���� = 0																				� = 1,2,⋯ , �	.

��

���

��� =

⎩
⎪
⎨

⎪
⎧ 1						

�����ℎ	�	��	����	��	������	�	���	�ℎ�	����	���������
��	�ℎ�	����	���ℎ	�ℎ�	������	�������	���������.					

−1					
�����ℎ	�	��	����	��		������	�	�ℎ���	�ℎ�	����	����� −
����	��	�������	�ℎ�	������	�������	���������.								
0			 �����ℎ	�	��	���	����	��	������	�.																	

�

 (3)

 

Where: Mj is the number of branches in closed circuit i, O is 
the number of closed circuit in the ventilation network, Hj, 
∆Hj, Pj, FHj represents air pressure, airway resistance, natural 
ventilation pressure, and fan pressure, respectively. The air 
quantity and air pressure should be within the upper and lower 
limits [24]: 
 

��_��� ≤ �� ≤ ��_���
��_��� ≤ �� ≤ ��_���

 (4)

 

Where: Qj_min, Qj_max represent upper, lower ventilation 
quantity limits of branch j respectively. Hj_min, Hj_max, represent 
upper, lower ventilation pressure limits of branch j 
respectively. 
 

According to the theory of ventilation network solution of 
circuit air-quantity method, if there is a spanning tree with m 
nodes and n branches, adding each branch of the b=n-m+1 
cotree can determine an independent circuit [25]. The airflow 
rate is equal to that of the cotree branch [26]. Suppose there 
are k branches with known airflow rate and b-k branches with 
unknown airflow rate in b cotree branches, the airflow rate of 
any branch in the ventilation network can be expressed as [27]: 
 

�� =������ + � ���
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�����

��									� = 1,2,⋯�
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 (5)

 

Where ∑ �����
�
��� represents total air quantity of known 

branches, while∑ �����
�
�����  is the total air quantity of 

unknown branches. Csjrepresents element of independent 
circuit matrix corresponds to the selected spanning tree. 
Obviously, Equation (5) satisfies Kirchhoff’s 2nd Law. 
Constraints for the above equation is given as: 
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Where np represents the number of closed circuit in ventilation 
network, rj is the air way resistance of branch j. Rij represents 

selected independent path matrix element： 
 

��� = �
1 �����ℎ	�	�������	��	�������	�.							

0 �����ℎ	�	�����′�	������	��	�������	�.
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Combining the above equations, the optimization model can be 
expressed as: 
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This model has one objective function and 4 constraint 
conditions. In order for the PSO algorithm to be able to solve 
such a problem, the constraint conditions are converted to 
exterior penalty functions [28]. The range of upper and lower 
limits of the adjustable resistance for branches are wide, and a 
reasonable search value range is set to save computation time. 
Finally, the ventilation network optimization problem is 
transformed into an unconstrained optimization problem as 
shown in Equation (8). 
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Where∅ and �represent penalty factor of the upper and lower 
limits for air pressure and quantity. They increase with 
iteration number. 
 

The λ-PSO algorithm 
 

The particle swarm optimization algorithm (PSO) is an 
evolutionary computation technique derived from the study of 
predicting birds’ behaviours. This optimization tool was first 
proposed by Dr. Barnhart and Dr. Kennedy in 1995[29]. The 
underlying principle is initializing a set of random solutions 
and iteratively searching for the optimal values. In the basic 
PSO algorithm, the particle swarm is composed of n particles, 

and the position �⃑� of each particle represents the potential 
solution of the optimization problem in the D dimensional 
search space. The particle travels in the search space at a 
certain speed, which dynamically adjusts the next flight 
direction and distance based on the flight experience of its own 
and companions [30]. All the particles have an adaptation 
value determined by the objective function, and the best 

position that they have found so far (local extreme��⃑�) and their 

current position (�⃑�) are memorized. Each particle also knows 

the best position of all particles (global extremum ��⃑�), which is 

the best position in all the local best positions. Each particle i 
contains a D dimensional position vector �⃑� = (���, ���,⋯ , ���)	and 

velocity vector	����⃑ � = (���, ���,⋯ , ���). When the particle i searches 
for the solution space, the optimal experience location 

��⃑� = (���, ���,⋯ , ���) is saved. At the beginning of each 
iteration, the particle adjusts its position through changing 
velocity vector, based on its inertia and experience and 

swarm's optimal experience location ��⃑� = ����, ���,⋯ , ����. 

In the expression (10), c1 and c2 represent acceleration factors, 

both of which are positive constant; rand(0,1) generates 
random numbers distributed on interval [0, 1]; d is dimension; 
ω is the inertia weighting factor (0<ω<1) which decreases as 
the number of iterations increases. Each particle's position and 
velocity are updated as following: 
 

���
��� = ���

� + ���
��� (9)

���
��� = ����

� + ������(0,1)(���
� − ���

� )

+������(0,1)(���
� − ���

� )
 (10)

 

Equation (10) consists of three parts. The first item on the right 
hand of Equation (10) is the original particle velocity. A larger 
velocity benefits global search, while smaller velocity is good 
for local search. Therefore, the method has the balanced ability 
for global and local search. The second item in Equation (10) 
is the influence of the history best location to the current 
location. Randomly adjusted by c1rand(0, 1), it makes use of 
particles’ history experience to obtain a strong global 
searching capability. The third part in Equation (10) is the 
influence of all particle’s best location to the current location. 
It reflects the information sharing and social collaboration 
between particles. This is also randomly adjusted by 
c2rand(0,1). Under the combined effect of these three factors, 
the particle adjusts its speed and position to effectively reach 
the best position. 
 

The optimization model constructed in Section 2 has high 
dimensional, complex, and nonlinear constraints. It is difficult 
for the PSO algorithm to converge in the feasible solution 
domain[31]. At the beginning of iterations, particle velocities 
are high, and it is easy for them to fly to the boundary of the 
searching space that is far away the optimal solution. After a 
certain number of iterations, most particles would converge to 

a very small domain around a certain position �⃑, given 

as:���⃑� − �⃑�� → 0 and���⃑� − �⃑�� → 0. As ω<1, when the iteration 

reaches to a certain number, the flying speed of particles also 
tends to 0 with a single flight direction. This may lead to the 
potential issue of converging too fast and fall into the local 
extremum. To solve these problems, the rand () of PSO 
algorithm was extended from (0, 1)to (-1, 1), thus, Equation 
(10)was transformed to (11). This revised PSO algorithm is 
called the γ-PSO algorithm. 

���
��� = ����

� + ������(−1,1)(���
� − ���

� )

+������(−1,1)(���
� − ���

� )
 (11)

 

Optimization case study 
 

A ventilation network from the literature was chosen as a case 
for validating the proposed optimization method. As shown in 
Figure 1, it is an exhausting ventilation network system with 3 
fans, 17 branches, 11 nodes and 7 independent circuit [13]. 
The fans are locates on branches e1, e2 and e3. 
 

 
 

Figure 1 Ventilation network schematic diagram. 
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Branchese4, e5,e6,e10 and e12 has a fixed ventilation demand 
of 26, 31, 31, 1, 32 m3/s, respectively. The basic ventilation 
parameters can be found in Table1. The original airflow rates 
are the result of natural split. Choose the spanning tree of T= 
[{V1,V2,… V11},{e1,e2,e3,e11,e13,e17,e8,e9,e14,e15}], the 
corresponding  cotrees are {e4,e5,e6,e7,e10,e12,e16}. 
Therefore, 7 independent circuit are obtained by adding the 
spanning tree with each of the cotree branch. Assume the 
airflow in the 7 independent circuits are q1 to q7, and the flow 
directions are the same with that in the cotrees. The 
independent circuits are listed below:  

q1：e4-e1-e17-e8； 

q2：e5-e11-e2-e17-e8-e9； 

q3：e6-e3-e17-e14； 

q4：e7-(-e15)-(-e14)-e8-e9； 

q5：e10-e11-e2-(-e1)； 

q6：e12-e13-e2-e17-e14-e15； 

q7：e16-e3-(-e2)-(-e13)； 
The air quantity of each independent circuit equals to the 

air quantity of the added cotree. The results are: 
q1=Qe4=26m3/s; 
q2= Qe5=31m3/s; 
q3= Qe6=31m3/s; 
q4= Qe7; 
q5= Qe10=1m3/s; 
q6= Qe12=32m3/s; 
q7= Qe16; 

 

Table 1 Basic ventilation parameters and comparison before 
and after optimization. 

 

Branch 
No. 

Start 
point 

End 
point 

Resistanc
e 

/ Ns2·m-8 

Original 
air flow 

rate 
/m3·s-1 

Optimized 
air flow 

rate 
/m3·s-1 

Adjustab
le or 
not? 

Airpressur
eregulation 

/Pa 

1 6 11 0.80 25.00 25.0 Yes 0.00 

2 8 11 0.12 60.00 57.4 Yes 0.00 

3 10 11 0.34 35.00 37.6 Yes 0.00 

4 2 6 1.20 29.78 26.0 Yes 0.00 

5 3 7 1.00 28.97 31.0 Yes 0.00 

6 5 10 1.20 30.28 31.0 Yes 30.00 

7 3 4 0.65 5.10 5.0 Yes 35.66 

8 1 2 0.08 63.85 62.0 Yes 0.00 

9 2 3 0.20 34.07 36.0 Yes 0.00 

10 6 7 0.30 4.78 1.0 Yes 408.20 

11 7 8 0.32 33.75 32.0 Yes 0.00 

12 4 9 1.00 30.97 32.0 Yes 0.00 

13 9 8 0.33 26.25 25.4 Yes 0.00 

14 1 5 0.14 56.15 58.0 Yes 0.00 

15 5 4 0.20 25.87 27.0 Yes 0.00 

16 9 10 0.30 4.72 6.6 Yes 0.00 

17 11 1 0.00 120.00 120.0 No 0.00 
 

According to the circuitair-quantity method, the airflow rate of 
each branch is the sum of the airflows of the independent 
circuit that flows through the branch. It is positive when they 
have the same direction, otherwise negative. Hereby, the 
airflow rates of each branches are: 
 

e1: Q1=q1-q5=25; 
e2: Q2=q2+q5+q6-q7=64-q7; 
e3: Q3=q3+q7=31+q7; 
e4: Q4=26; 
e5: Q5=31; 
e6: Q6=31; 

e7: Q7=q4; 
e8: Q8=q1+q2+q4=26+31+q4=57+q4; 
e9: Q9=31+q4; 
e10: Q10=1; 
e11: Q11=q2+q5=32; 
e12: Q12=32; 
e13: Q13=q6-q7=32-q7; 
e14: Q14=q3+ q6-q4=63-q4; 
e15: Q15=q6-q4=32-q4; 
e16: Q16=q7; 
e17: Q17=q1+q2+q3+q6=120; 

 

In this case study, fan pressure is restricted to less than 5000 
Pa, and airflow rate is constraint within [-100, +100]. The 
number of particles was set as 30 and the penalty coefficients 
φ and ψ were set as 100. For performance comparison 
purposes, the λ-PSO algorithm was compared with the Trelea's 
types1 PSO, Trelea's type 2PSO, and the Clerc's Constricted 
PSO algorithm. Figure 2 and Table2 show the convergence 
performance and the parameter values for each algorithm. The 
basic principles for these algorithms are the same, but they 
have different treatment in the key parameters 
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(d) 

Figure 2 Comparison of four PSO optimization procedures (a) Clerc’s 
Constricted PSO optimization procedure; (b) Trelea Type1 PSO optimization 

procedure; (c) Trelea Type1 PSO optimization procedure; (d) λ-PSO 
optimization procedure. 

 

From the optimization process, it is obvious that Clerc's 
Constricted PSO has global search capability with relatively 
slow convergence speed, which converges to the global 
optimum after more than 500 iterations. Trelea’s types1 and 
type2 PSO, which converged to a local optimum after about 
300 iterations. It converges quickly while its global search 
ability is limited. The λ-PSO algorithm converged to the global 
optimal solution after only about 200 iterations. Meanwhile, 
different from the other three algorithms, when the λ-PSO 
algorithm converges to the global optimal solution, all the 
particles disperse over the searching space instead of clustered 
around one solution (demonstrated in Figure.3 which only 
shows flow quantity in branch q4 and q7). This ensures active 
and global search capability of particles to prevent limiting the 
solution local optimal values. Therefore, λ-PSO algorithm over 
performs the other algorithms in both calculation speed and 
global searching capability. According to the optimization 
result, the optimal air quantity and resistance of branches were 
calculated and shown in Table1. Based on the result of the λ-
PSO optimization, the operational point for each fan and their 
power consumptions are listed in Table 3. It is obvious that the 
ventilation power consumption was reduced from 261.9 kW to 
249.62 kW. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3 Ventilation energy consumption before and after 
optimization 

 

Fan No. 
Original data Optimized data 

air quantity 
/m3·s-1 

air pressure 
/Pa 

Power 
/kW 

air quantity 
/m3·s-1 

air pressure 
/Pa 

Power 
/kW 

1 25.0 2055.0 51.4 25.0 1613 40.33 

2 60.0 2315.0 138.9 57.4 2173 124.73 

3 35.0 2046.0 71.6 37.6 2249 84.56 

Total power 
/kW 

261.9 249.62 

 

CONCLUSION 
 

As shallow mineral resources are depleting, current 
underground mines become deeper. This requires a more 
powerful and reliable ventilation system. As air flow paths are 
longer for deeper mines, the power cost associated with 
ventilation is tremendous. Thus, an optimized ventilation 
system is essential for the cost efficiency of a mine. 
Ventilation needs to be regulated so more air can reach to the 
area where contamination levels are high or work activities are 
intensive. This can be achieved by regulating the resistance of 
one or several airways, and many combinations of ways can 
result in the required air flow in one area. However, the 
method with the lowest power consumption should be selected 
to save ventilation power cost with the least branches 
regulated. 
 

This paper developed a mine ventilation optimization model 
and used an improved particle swarm optimization algorithm 
to solve the model. Through comparison with other algorithms, 
results show that this method has the ability to find the global 
optimization value with the lowest power consumption within 
the shortest time. To the authors knowledge, the current 
commercially available mine ventilation network analysis 
software does not have this function yet. The proposed 
algorithm can be incorporated to these software for fast and 
cost efficient ventilation planning. 
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