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INTRODUCTION 
 

Osteoporosis, a growing bony disease, is distinguished by 
reduced bone mass and micro-architectural bone tissue 
deterioration accompanied with increased bone fragility and 
subsequent susceptibility to fracture, and diagnosed when bone 
mineral density of a patient becomes 2.5 standard deviations or 
more below the average bone mass value for young healthy 
adults [Kanis and Kanis, 1994]. In adults, remodeling of bones 
is performed through a coordinated mechanism by which 
bone-resorbing osteoclasts remove old b
forming osteoblasts mineralize and synthesize new bone 
matrix, while their disturbances in the physiological metabolic 
process cause reduced bone mass named as degenerative 
osteoporotic disorder [Beck et al., 2012; Riggs and Melton, 
2015; Mackey and Whitaker, 2015]. Another neoplastic 
disorder is osteosarcoma characterized by malignant tumor of 
the skeleton [Abate et al., 2010; Pakos et al
context, the growth of solid neoplasm is accompanied by neo
vascularization i.e. angiogenesis in tumor growth and 
progression and subsequent metastases supported by the over
expressions of vascular endothelial growth factor (VEGF) and 
matrix metalloproteinases [Carmeliet and Jain, 2000; Ferrare 
and Kerbel, 2005; Fukumura and Jain, 2007; Hao 
Li et al., 2015; Ouyang et al., 2015; Shojaei, 2012; Holash 
al., 1999; Vu et al., 1998].  
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Many people suffer from bone-related diseases such as osteoporosis, osteosarcoma, 
microbial infections and cancer throughout the world each year resulting in their deaths. 
Recently, hydroxyapatite nanoparticles have been emerged as a potent nanotechnology
based delivery system to treat several diseases. Owing to their nanosizes (<100 nm), high 
surface to volume ratio, easy of surface functionalization and suitable physico
features such as bioactivity, biocompatibility, osteoinductivity and osteocon
are highly potent and favorable to generate cytotoxicity to kill the cells especially by the 
high uptake of calcium concentration within the cells. Moreover, their appropriate surface
modifications with ligands and other biomolecules may ma
to deliver potent loaded-cargos to specific site of interest with a controllable and sustained 
manner leading to cellular destructions. The review demonstrates their synthesis, surface
functionalizations, mechanism of actions, immune responses and biomedical applications 
against various diseases to consider them as future nanotechnological delivery system.  
 

 

Osteoporosis, a growing bony disease, is distinguished by 
architectural bone tissue 

deterioration accompanied with increased bone fragility and 
subsequent susceptibility to fracture, and diagnosed when bone 

patient becomes 2.5 standard deviations or 
more below the average bone mass value for young healthy 
adults [Kanis and Kanis, 1994]. In adults, remodeling of bones 
is performed through a coordinated mechanism by which 

resorbing osteoclasts remove old bones and bone-
forming osteoblasts mineralize and synthesize new bone 
matrix, while their disturbances in the physiological metabolic 
process cause reduced bone mass named as degenerative 

., 2012; Riggs and Melton, 
key and Whitaker, 2015]. Another neoplastic 

disorder is osteosarcoma characterized by malignant tumor of 
et al., 2009]. In this 

context, the growth of solid neoplasm is accompanied by neo-
nesis in tumor growth and 

progression and subsequent metastases supported by the over-
expressions of vascular endothelial growth factor (VEGF) and 
matrix metalloproteinases [Carmeliet and Jain, 2000; Ferrare 
and Kerbel, 2005; Fukumura and Jain, 2007; Hao et al., 2015; 

., 2015; Shojaei, 2012; Holash et 

In another concern, mitochondrial dysfunction causes the 
generation of superoxide anion free radicals due to electron 
transport chain leakage resulting oxidative stress induction 
through reactive oxygen species (ROS) over
[Turrens, 2003]. This ROS-producti
harmful consequences such as protein and lipid oxidations, 
mitochondrial RNA / DNA damages, Ca
mitochondrial permeability transition pore activation and 
cytochrome c liberation following cellular apoptosis [Orrenius 
et al., 2007]. Both the mutations of mitochondrial proteins and 
oxidative stress trigger the cell death signaling cascade leading 
to organ damage, failure and disease development reflected on 
diabetes, cancer, neurodegenerative Alzheimer’s and 
Parkinson’s diseases, ischemia
failure [Taylor and Turnbull, 2005; Butterfield, 2002; Bayeva 
et al., 2013; Moreira et al., 2010; Weissig 
Furthermore, other criterion is the microbial infections 
associated with multidrug resis
[Mandal, 2018]. These diseases generally develop when 
antioxidant defense system and innate and acquired immune 
system of the body become failure to overcome the inductive 
origin of disease development [Mandal, 2018].  
 

In the past decades, global investigators have attempted to 
discover new solutions for improving treatments utilized for 
various bone related disorders, injuries, cancer and microbial 
infections. Their attention has been concentrated to the 
biomaterial field to create and develop new and improved 
ceramic biomaterials for tissue engineering where 
nanotechnology has restructured the conventional method of 

International Journal of Current Advanced Research 
6505, Impact Factor: 6.614 

www.journalijcar.org 
2018; Page No. 15869-15877 

//dx.doi.org/10.24327/ijcar.2018.15877.2911 

This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ardhendu Kumar Mandal 
Indian Institute of 

 
 
 
 
 
 
 

HYDROXYAPATITE NANOPARTICLES AS DELIVERY SYSTEM IN  

Indian Institute of Chemical Biology, India 
 

related diseases such as osteoporosis, osteosarcoma, 
microbial infections and cancer throughout the world each year resulting in their deaths. 
Recently, hydroxyapatite nanoparticles have been emerged as a potent nanotechnology-
based delivery system to treat several diseases. Owing to their nanosizes (<100 nm), high 
surface to volume ratio, easy of surface functionalization and suitable physico-chemical 
features such as bioactivity, biocompatibility, osteoinductivity and osteoconductivity, they 
are highly potent and favorable to generate cytotoxicity to kill the cells especially by the 
high uptake of calcium concentration within the cells. Moreover, their appropriate surface-
modifications with ligands and other biomolecules may make them highly efficient carrier 

cargos to specific site of interest with a controllable and sustained 
manner leading to cellular destructions. The review demonstrates their synthesis, surface-

ns, immune responses and biomedical applications 
against various diseases to consider them as future nanotechnological delivery system.   

concern, mitochondrial dysfunction causes the 
generation of superoxide anion free radicals due to electron 
transport chain leakage resulting oxidative stress induction 
through reactive oxygen species (ROS) over-production 

production, inturn, causes several 
harmful consequences such as protein and lipid oxidations, 
mitochondrial RNA / DNA damages, Ca2+-dependent 
mitochondrial permeability transition pore activation and 
cytochrome c liberation following cellular apoptosis [Orrenius 

., 2007]. Both the mutations of mitochondrial proteins and 
oxidative stress trigger the cell death signaling cascade leading 
to organ damage, failure and disease development reflected on 
diabetes, cancer, neurodegenerative Alzheimer’s and 

iseases, ischemia-reperfusion injury and heart 
failure [Taylor and Turnbull, 2005; Butterfield, 2002; Bayeva 

., 2010; Weissig et al., 2007]. 
Furthermore, other criterion is the microbial infections 
associated with multidrug resistance and biofilm-development 
[Mandal, 2018]. These diseases generally develop when 
antioxidant defense system and innate and acquired immune 
system of the body become failure to overcome the inductive 
origin of disease development [Mandal, 2018].   
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various bone related disorders, injuries, cancer and microbial 
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ceramic-usage in medical sciences. In general, patients suffer 
from drug resistance, insolubility, toxicity, bioavailability, 
enzymatic degradation, physiological barriers and specific 
target efficacy. In this concern, hydroxyapatite nanoparticles 
(HAp NPs, Ca(PO4)6(OH)2), the main component of the hard 
tissue such as bone and teeth, have attracted more attention in 
the field of biomedical applications owing to their exceptional 
characteristics such as favorable bioactivity, bioresorbablity, 
biocompatibility, biodegradability, osteoinductivity and 
osteoconductivity in treating bone related diseases, infective 
diseases, cancer and repair of hard tissue injury [Zhou and Lee, 
2011; Danoux et al., 2014; Kobayashi and Murakoshi, 2014; 
Sooksaen et al., 2010; Zyman et al., 2013]. HAp NPs can 
exhibit significant cytotoxicity to diseased cells or organisms 
through mitochondria-dependent apoptotic induction emerging 
from oxidative stress and retardation of protein synthesis 
owing to their profuse nuclear and endoplasmic reticulum 
localizations as well as high intracellular concentrations of 
calcium ions (Ca2+) [Yuan et al., 2010; Meena et al., 2012; 
Qing et al., 2012; Chen et al., 2007; Xu et al., 2012; Han et al., 
2014; Tang et al., 2014]. Moreover, HAp NPs may also be 
utilized as a carrier for protein, gene and drug delivery [Tada 
et al., 2010; Matsumoto et al., 2004; Uskokovic and 
Uskokovic, 2011]. These NPs can adsorb various chemicals 
onto their surfaces through electrostatic interactions, and 
owing to their soluble capability, the cargos may be liberated 
at specific targeted sites, while their solubility may be 
regulated by different substituted ions such as chloride, 
fluoride or carbonate, and low pH medium located in 
cancerous areas [Gomi et al., 1993]. Utilizing surfactants as 
the structure directing agent based on different synthesis 
techniques, pores were introduced into the diverse structure of 
HAp at the nano level to achieve desired loading and release 
profile of cargos [Al-Sokanee et al., 2009; Palazzo et al., 2005; 
Sadat-Shojaj et al., 2013]. In order to modulate HAp NPs-
surface, they may be coated with three layers of poly 
(allylamine), alginate and alendronate where outer alendronate 
layer is used as a targeting moiety to bind bone tissue and also 
as anti-resorptive drug to induce osteoconduction leading to 
increment of bone density in bone matrix for the treatment of 
osteolysis [Allen and Cullis, 2013]. HAp NPs loaded with 
appropriate active biomolecules may also be surface-
functionalized with various ligands such as monoclonal 
antibody, sugar, protein, genes, lipids, poly ethylene glycol, 
poly (lactide-co-glycolide), poly (glycolide)-poly (ethylene 
glycol) and doped with rare-earth ions and metals to treat bone 
related diseases, cancer, metastases and infections [Dougall et 
al., 1999; Kim et al., 2016; Tokatlian and Segura, 2010; Giger 
et al., 2013; Hwang et al., 2016; Khajuria et al., 2016; Coelho 
et al., 2013; Han et al., 2008; Turner et al., 1989; Turner and 
Claringbold, 1991; Shi et al., 2009; Tai et al., 2013; Perry et 
al., 2012; Huang et al., 2008; Singh et al., 2015; Puljula et al., 
2015]. 
 

This review demonstrates a survey of latest investigations 
regarding hydroxyapatite nanocomposites dealed with active 
ingredients-loaded preparatory methods, surface-modifications 
/ encapsulations and doping with biomarkers accompanied 
with their targeting to specific diseased sites of interest 
crossing biological barriers for considering them as a highly 
promising delivery system against various diseases.  
 
 
 

Synthesis of hydroxyapatite nanocomposites 
 

HAp NPs are generally prepared by utilizing chemical 
precipitation, emulsion, hydrothermal and sol-gel methods. 
The most commonly used chemical precipitation methods are 
followed by any of the chemical reactions:  
 

1. 10 Ca(OH)2 + 6 H3PO4 → Ca10(PO4)6(OH)2 + 18 H2O 
2. 10 Ca(NO3)2 + 6 (NH4)2HPO4 + 2 H2O → 

Ca10(PO4)6(OH)2 + 12 NH4NO3 + 8 HNO3 
 

The basic common synthesis process involves the drop by drop 
addition of one phosphate reagent to the calcium reagent under 
continuous stirring, while the molar ratio of Ca/P maintained at 
HAp NPs is 1.67. In general, 5M aqueous Ca2+ ion solution is 
made by liquefying 0.03M Ca(NO3)2.4H2O in 6 mL distilled 
water. An aqueous 1500 µg / mL drug solution is separately 
prepared by dissolving drug into DMSO / Tween 20 and 
finally in distilled water. Afterthat, the solutions are stirred 
until a clear suspension is found. NH4OH is adjoined drop by 
drop to maintain the pH of Ca2+ solution at 9 followed by the 
slow-addition of drug solution into this solution with 
continuous stirring. For maintaining the molar ratio of Ca to P 
at 1.67:1 in the reaction mixture, 0.018M (NH4)2HPO4 is 
adjoined to Ca2+-drug solution following the re-adjustment of 
the pH of the reaction-mixture to 9 by drop by drop NH4OH-
addition. The dissolution is kept for 24 h at room temperature 
and spun to void supernatant out. The precipitate is then 
cleansed with phosphate-buffered saline (PBS, pH 7.0) and de-
ionized water three times for the removal of NO3

- ions and 
loosely bound other components. 2M% Zn2+ and Mg2+-doped 
HAp -drug NPs may be prepared by the adjoining of the 
needed amount of Zn(NO3)3.6H2O and Mg(NO3)3.6H2O 
respectively in the Ca2+ aqueous solution. After cleansing, NPs 
are dried at room temperature. Porous HAp NPs may be 
prepared by various methods such as double emulsion [Shum 
et al., 2009], self-assembly [Saha et al., 2009; Xia et al., 2009; 
Ye et al., 2010; Huang et al., 2011], solvo-thermal [Ma and 
Zhu, 2009], hydrothermal [Wang et al., 2008; Ng et al., 2010; 
Guo et al., 2011; Guo et al., 2012], sol-gel [Dou et al., 2012] 
and spray drying [Sun et al., 2009]. During preparation of 
HAp NPs, an extensive regulated over size and morphology 
may be attained by modifications of experimental conditions 
[Zhang et al., 2009; Wuthier et al., 1985; Ren et al., 2013], the 
inclusion of surfactants [Cao et al., 2004] such as saccharides, 
cetyltrimethylammonium bromide (CTAB) and stearic acid, 
and chelating agents [Lopez et al., 1998; Ma, 2012] such as 
potassium sodium tartrate and trisodium citrate. Utilizing pore 
expander and cationic co-surfactant such as 1-dodecanethiol 
and CTAB respectively, large pore HAp NPs may also be 
synthesized [Bakhtiari et al., 2016].  
 

Nanocrystalline hydroxyapatite doped with rare-earth 
samarium (Sm) element may be produced by adjusting the 
atomic ratio of Sm / [Sm+Ca] from 0% to 10% and [Ca+Sm] / 
P as 1.67. Samarium (III) nitrate hexahydrate and calcium 
nitrate tetrahydrate are liquefied in deionised water to get 300 
mL Ca+Sm solution, while ammonium dihydrogen phosphate 
is liquefied in deionised water to form 300 mL P-containing 
solution. Then Ca+Sm solution is stirred at 100ᵒC for 30 
minutes, while pH of P-containing solution is set to 10 with 
NH3 followed by stirring for 30 minutes. Then the P-
containing solution is adjoined drop-wise into the Ca+Sm 
solution followed by stirring for 2 h, while the pH is adjusted 
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to 10. Afterthat, the precipitate (Sm:HAp NPs) is cleansed 
several times with deionised water and dried at 100ᵒC. 
 

Grafting or coating of HAp NPs with polymers suited with the 
copolymer / polymer matrix is also performed by several 
methods. For PGA-PEG coating of HAp NPs, 40 mg of this 
nanoparticles and 464 mg (4 mmol) of glycolide are dried 
overnight under 32 in Hg vacuum. Then HAp NPs and 
glycolide are dissoluted in 3 mL dimethylformamide (DMF), 
while glycolide, phosphazene base P2-t-Bu at 2M in THF is 
added to it. The reaction vessel is purged under N2 continuing 
24 h reaction, while PGA coating-thickness is regulated by 
altering the ratio of glycolide and HAp NPs. Afterthat, 100 mg 
(0.02 mmol) of methoxy-poly (ethylene glycol)-isocyanate is 
adjoined directly into the reaction-mixture and kept on with for 
an additional 6 h under N2 atmosphere. The yield is cleansed 
twice with DMF, and probable free polymer / monomer once 
with double distilled water through spinning at 5000 rpm for 5 
min and lyophilized. The surface of HAp NPs may also be 
grafted through the reaction with their surface hydroxyls with 
poly (L-lactide-co-glycolide) (PLGA) to improve 
characteristics, dispersability and tensile strength [Song et al., 
2013]. Furthermore, chitosan and carboxymethylated-chitosan 
may also be coated on the surface of HAp NPs to get higher 
solubility, viability and narrower size distribution [Muzzarelli 
et al., 2012; Berger et al., 2004; Kaya et al., 2015; Kaya et al., 
2014; De Souza et al., 2009; Liang et al., 2004; Dumont et al., 
2016; Barna et al., 2015]. In addition, to overcome microbial 
infection, biofilm and drug resistance, silver ions have been 
incorporated into HAp NPs-surface following co-precipitation 
method [Rameshbabu et al., 2007; Kim et al., 1998; Lim et al., 
2015]. 
 

Characterizations of hydroxyapatite nanocomposites   
 

The size and morphology of HAp nanocomposites may be 
monitored and determined by using transmission electron 
microscope, while their phase composition may be determined 
by X-ray diffraction analysis. The composition of 
nanocomposites may be analyzed by Fourier transform 
infrared (FT-IR) spectroscopy, while the zeta potential, 
hydrodynamic size and surface charge of particles in 
suspension may be measured by utilizing Zetasizer Nano ZS 
dynamic light scattering device. 
 

Mechanism of action of hydroxyapatite nanoparticles 
 

HAp NPs may be interiorized by cells via pinocytosis, 
phagocytosis, caveolae / clathrin –independent endocytosis 
and nonendocytosis pathways, while elevation of Ca2+ within 
cells and around endoplasmic reticulum hampers cellular Ca2+ 
homeostasis causing oxidative stress mediated cytotoxicity 
leading to caspases- 9 and 3 -activated cellular apoptosis via 
the mitochondrial-dependent pathway, inhibition of protein 
synthesis by reducing the mRNA binding to its proper 
ribosomal binding site owing to their high adsorption 
capability for ribosome, and the cell cycle arrest in G0/G1 
phase causing inhibition of cell proliferation, accompanied 
with necrosis and autophagic cell death [Zhao et al., 2011; 
Rothen et al., 2006; Monteith et al., 2007; Zhivotovsky and 
Orrenius, 2011; Meena et al., 2012; Xu et al., 2012; Han et al., 
2014; Beland et al., 1979]. The overload of Ca2+ by the 
exposure of HAp NPs is caused by their quick decadence in 
acidic cancer cells throughout intracellular translocation in 
phagolysosomal compartment containing hydrolases, while 
exorbitant extracellular Ca2+ influx, Ca2+ liberation from 

intracellular storage or decreased Ca2+ efflux may also cause in 
raised Ca2+ level to produce cytotoxicity [Zhao et al., 2011; 
Bloebaum et al., 1998; Tang et al., 2014; Orrenius et al., 2003; 
Zhivotovsky and Orrenius, 2011]. 
 

Hydroxyapatite nanoparticles as delivery vehicle 
 

HAp NPs have been applied as a carrier to deliver varieties of 
therapeutics such as drugs, proteins, enzymes, antigens and 
genes [Thomas et al., 2015; Thomas et al., 2016]. HAp NPs-
coated liposomes have been utilized as efficacious drug 
delivery vectors for hydrophobic compounds such as 
indomethacin, a non-steroidal anti-inflammatory drug [Xu et 
al., 2007]. The osteoconductive HAp NPs loaded with 
bisphosphonate alendronate have been coated with layer-by-
layer pH-responsive biopolymers poly (allylamine) and 
sodium alginate to treat osteoporosis for targeted drug delivery 
by providing superb biocompatibility and surface functionality 
via their COOH groups [Leu et al., 2006; Liang et al., 2012]. 
Based upon the surface functionalization of nanoparticles, 
especially by positively charged polymer chitosan coating, 
celecoxib has been encapsulated in the HAp NPs coated 
system for the treatment of colon cancer as well as tumor 
growth inhibition as an efficient vehicle for targeted drug 
delivery as positively charged HAp nanocomposites become 
highly accumulated into negatively charged cancer cells 
through electrostatic interactions [Yang and Hon, 2009; Li et 
al., 2009; Venkatesan et al., 2011]. As hydrophilic and 
negatively charged hyaluronic acid (HA) is a rising polymer to 
target the CD44 glycoprotein, expressed in tumor cells, some 
investigators have designed doxorubicin-loaded HAp NPs 
coated with HA to get efficient tumor targeting delivery 
[Zollen, 2011; Xiong et al., 2016]. Cancer may be dealt with 
cytotoxic free radicals and ROS through photodynamic 
therapy, but this technique has limitation owing to the low 
tissue piercing capability of visible light [Robertson et al., 
2009; Klein et al., 2013]. In this context, researchers have 
reported metal-doped HAp NPs to utilize for cell apoptosis and 
in vivo tumor growth inhibition after irradiation with γ-rays as 
radiosensitizer metal ions give rise to significant ROS 
generation in cells for their damages [Kwatra et al., 2013; 
Matusiewicz, 2014; Chen et al., 2016]. Porous HAp NPs 
loaded with different antibiotics such as norflaxacin, 
ibuprofen, vancomycin exhibited high drug loading capacity 
and sustained liberation characteristics to the target site against 
infections [Melde and Stein, 2002; Tang et al., 2011; Ye et al., 
2010]. Some researchers investigated in vitro desorption and 
adsorption of few anticancer drugs such as di 
(ethylenediamineplatinum) medronate, cisplatin and 
alendronate towards plate-shaped and needle-shaped porous 
HAp NPs, while the specific characteristics of the drugs and 
the morphology of the HAp NPs affected the desorption and 
adsorption kinetics of the drugs [Palazzo et al., 2007]. The 
other group of researcher prepared porous HAp NPs-surface 
functionalized and modified by using polyethylene glycol and 
folic acid with the attachment of anticancer paclitaxel drug, 
while the drug liberation profile exhibited an initial burst due 
to easily detachment from the NPs-surface, followed by a 
sustained release [Venkatasubbu et al., 2013].  
 

Biodistribution and elimination of hydroxyapatite 
nanoparticles 
 

The biodistribution pattern of HAp NPs differs on their 
morphology, size, surface charge and surface chemistry along 
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with the modes of administration such as oral, intravenous, 
intraperitoneal, subcutaneous and intramuscular. HAp NPs 
may be decomposed to their consisting ions i.e. Ca2+, PO4

3- 
and OH- into the body after administration in an acidic 
environment due to the exchange of phosphate ions by 
hydrogen ions catalyzation from the NPs-surface into solution 
and recycled in bone construction [LeGeros, 1993; 
Christoffersen and Christoffersen, 1982]. Some particles may 
be endocytosed or phagocytosed by macrophages to 
accumulate into reticuloendothelial cells and become 
decomposed by lysosomal hydrolytic enzymes [Huang et al., 
2004]. Smaller (<5 nm in size) HAp NPs are generally 
eliminated through urine, whereas larger NPs phagocytosed by 
macrophages undergo hepatobiliary excretion through feces 
[Mandal, 2018a]. Few researchers demonstrated that the 
intravenous administration of HAp NPs (40 nm and 200 nm in 
size) showed their major accumulation in liver and minor in 
spleen [Li and Huang, 2008; Ong et al., 2008]. Another group 
of investigators demonstrated that the HAp NPs (50-100 nm in 
size) conjugated to quantum dots showed their accumulation 
mainly in liver followed by spleen and other tissues elsewhere 
in the body [Guo et al., 2008]. Other group focused that rod-
like HAp NPs (40-60 nm in size) loaded with plasmid DNA 
showed their accumulations in liver, kidney and brain tissue 
after intravenous administration [Zhu et al., 2004]. Few 
researchers also showed PEG-coated nanoparticles to 
accumulate in tumor cells through their leaky vascular 
endothelium due to enhanced permeation retention effect for 
longer blood circulation [Maeda, 2001].  
 

Immune responses of hydroxyapatite nanoparticles 
 

The administration of HAp NPs affects the rate of polymer 
matrix degradation causing inflammatory cell-mediated 
immune responses associated with antigen recognition by T-
lymphocytes with consequent activations of the innate immune 
factors, mainly humoral macrophages and their derivatives, 
while the mature dendritic cells can activate the adaptive 
immune responses. The interactions with HAp NPs may cause 
death of macrophages implying their cytotoxic damage-effect 
by the suppression of the cellular immune responses. The 
immune responses occur primarily by the activation of 
inflammation and tissue damage accompanied by increased 
pro-inflammatory cytokines -secretions, secondly by the 
regulation of the secreted inflammatory cytokines governed by 
the macrophages, and thirdly by the induction of suppressive 
activity on the monocytes-differentiative energy to produce 
cytokines [Popova et al., 2011]. Some investigators studied in 
vitro cytokine levels while the exposure of HAp NPs with 
human monocytes THP-1 cells for 24 h exhibited increased 
levels of TNF-α and IL-1β, and increased IL-6 production in 
the co-cultures of THP-1cells and human umbilical vein 
endothelial cells (HUVECs) [Liu and Sun, 2014]. Few other 
researchers demonstrated the immunostimulatory potentials of 
HAp NPs in bone-marrow derived macrophages (BMDMs) 
and bone-marrow derived dendritic cells (BMDCs) and in vivo 
on their shape and size -dependent activations of the NLRP3 
inflammosome and IL-1β secretion, while the smaller and 
needle -shaped HAp NPs significantly increased cytokines-
secretion but not larger nanoparticles [Lebre et al., 2017]. 
 

CONCLUSIONS AND FUTURE PERSPECTIVES   
 

HAp NPs are reported to be a suitable candidate for 
biomedical usages due to their good biodegradability, 

biocompatibility and bioactivity features, though their 
targeting and controlled contents-release to specific sites 
depends on the particles’ synthesis, shape, size, compositions 
and surface modifications. Use of surfactants and ligands for 
the synthesis of HAp NPs to overcome aggregation or 
agglomeration, make them nano or meso -porous utilized for 
cargos- loading and release for specific targeting to cells 
owing to the NPs’ high surface area  and pore volume. 
Moreover, their doping with active compounds, rare-earth ions 
or metals makes them multifunctional not only for the 
treatments of low-bone density pathologies but also for the 
microbial, biofilm or cancer related diseases. The previous 
studies demonstrated that medium lethal dose (160 mg/kg) of 
HAp NPs to Wistar rats caused their deaths due to acute 
capillary blockage for the accumulation of NPs-aggregates 
[Aoki et al., 2000]. Therefore, the synthesis of the particles 
should be nano or meso -porous coated with cargos, ligands or 
doping with other materials to overcome the biological 
barriers, drug resistance, biofilm and toxic side effects and to 
deliver the specific active ingredients to the diseased site with 
sustained release manner. However, it is needed a thorough 
systematic study to synthesize HAp NPs with appropriate size, 
shape and functionalization with their biodistribution, 
pharmacokinetics, elimination, immune responses and 
efficacies to overcome systemic toxicity before going to clinics 
for consideration as delivery system for biomedical 
applications against different diseases.  
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