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INTRODUCTION 
 

Visual odometry is a prerequisite for applications like 
autonomous navigation and obstacle detection, therefore acts 
as a key component for autonomous vehicles and robotics 
(Ligorio and Sabatini, 2013). The cruxe of 
the feature points selected for the calculation must be suitable. 
The majority of visual odometry remove moving points either 
by imposing additional constraints like (Badino, 2007
et al., 2015, Mur-Artal and Tardós, 2017, Wu
by determining the degree of deviation to the
et al., 2010, Bellavia et al., 2013, Deigmoeller and Eggert, 
2016). In fact, the point set obtained by these methods 
unavoidably contains a certain number of moving points
achieve true static feature points, Muslehet al
2012) proposed that only feature points on the ground surface 
were selected for ego-motion estimation. However, this 
method is comparatively poor in adaptability
because a plenty number of effective ground feature points is 
hard to be extracted in some situations. Furthermore, the ego
motion parameters obtained by the method only have 4 
degrees of freedom. He et al. (He et al., 2015
inertial sensors to deal with complex dynamic scenes and 
improved the robustness of motion estimation. The robustness 
of motion estimation was improved since they proposed a 
visual sanity check mechanism by compa
estimated rotation with measured rotation by a gyroscope. 
However, this method is not a pure vision
because of the introduction of other sensors. 
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This paper proposes a robust and precise method for detection the static feature points in 
dynamic scenes. We use the optical flow vectors as the basis for distinguishing the static 
features from the moving ones. This method is suitable for the visual odom
vehicles and robots. The static point is selected by a background point set determination 
process including motion clustering and motion recognition. The motion clustering 
separates moving objects from background according to optical flow o
motion recognition determines a background cluster according to scatteredness in image 
coordinates. The approach presented here is tested on substantial videos and the results 
prove the robustness and precision of the method.     
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This paper aims to detect the static feature points in dynamic 
scenes. The main contributions of this work can be 
summarized as follows: This paper
can determine the background point set (BPS) according to the 
difference of optical flow vectors between background points 
and moving points without any prior k
also provides a new idea for the analysis of visual problem in 
the dynamic scenes.    
 

PROPOSED METHOD 
 

Overview of the Approach 
 

KLT algorithm
generates feature points 

with optical flow clustering

Frame N

Frame N+1

Figure 1   The flowchart of the approach.
 

Figure 1 gives an overview of the approach. The optical flow 
of the point set is obtained from KLT algorithm 
Tomasi, 1994, Jun-Sik et al., 2009
process begins with the KLT algorithm which detects Shi
Tomasiconner points and tracks these features using Kanade
Lucas optical flow algorithm. The feature points generated by 
KLT contain both background (static) and moving points. Two 
steps including motion clustering and mo
used to determine background points. 
 

Motion clustering is to separate moving objects from the 
background according to their motion. In consideration that the 
background points differ from the moving points in terms of 
their motion relative to the camera and the optical flow is an 
indication of the difference in image, we consider clustering 
the background points and moving points according to their 
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This paper proposes a robust and precise method for detection the static feature points in 
dynamic scenes. We use the optical flow vectors as the basis for distinguishing the static 
features from the moving ones. This method is suitable for the visual odometry systems of 
vehicles and robots. The static point is selected by a background point set determination 
process including motion clustering and motion recognition. The motion clustering 
separates moving objects from background according to optical flow orientation, and the 
motion recognition determines a background cluster according to scatteredness in image 
coordinates. The approach presented here is tested on substantial videos and the results 
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optical flow vectors. The optical flow vectors contain two 
components: magnitude and orientation. Optical flow 
magnitude is not only related to the motion but also greatly 
affected by 3D position while the position has a relatively slow 
and continuous effect on optical flow orientation. Furthermore, 
the moving direction of a moving object is independent of 
surrounding background, which leads to a significant 
difference between optical flow orientations of moving objects 
and the surrounding background. Thus, we first cluster the 
feature points according to the optical flow orientation, and 
then use the optical flow magnitude as a constraint to remove 
outliers. 
 

Motion recognition is to determine a background cluster from 
the point sets clustered by the motion clustering. This has been 
done according to the scatteredness in image coordinates of 
each cluster. Normally, a moving cluster is a continuous entity 
with a small scatteredness while a background cluster can 
spread in a wide region within the image, thus has a large 
scatteredness. We select the one with the largest scatteredness 
as background points set.  
 

Motion Clustering 
 

Motion clustering is performed according to the optical flow 
orientation with the optical flow magnitude as a constraint to 

remove outliers. The magnitude L  and orientation   of an 
optical flow vector are computed as follows:  
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where   and   is real component and imaginary 

component of optical flow vector respectively.  
 

A self-adaptive K-means algorithm is used to cluster the 
optical flow orientation of the feature points. For data set 

 1 2, ,..., nX x x x , assuming that the clustering number is 

K, and the initial clustering center is  1 2, ,..., kV v v v , and 

the optimization precision is  . The clustering process of the 
traditional K-means algorithm (Hartigan, 1979, Mohd et al., 
2017) is as below: 
 

1.The sample ix  is assigned to the cluster whose clustering 

center with the smallest distance to ix  by setting cluster label 

as:  

arg min( , )i k i kT x v  (3) 

2.The new clustering center is computed to replace the 
previous one. 
 

3.Compute the Following Criterion Function 
 

1 1

( , )
ink

t
j i

i j

SSE d x v
 

  (4) 

where t is the iteration number , and in  is the sample 

number of cluster i . 
 

4.If 
1t tSSE SSE    , end the loop and output V  and T

. Else 1t t  , go to step 2).   
 

This traditional K-means clustering method has two 
limitations: 1) It requires the user to specify the clustering 
number K, which is not applicable in many cases. In this work, 
it is not suitable to adopt the same K value for all frames since 
optical flow orientation varies. 2) It randomly selects initial 
clustering center, which may give an incorrect clustering result 
and prolong the iteration. In order to overcome these 
shortcomings, we introduce a self-adaptive mechanism into the 
K-means method so that an optimal clustering number and 
initial clustering center can be determined. 
 

In this work, we select initial clustering centerbased on max-
min distance method. The initial center of the method is 
relatively far from each other, which can avoid the influence of 
the initial center too dense. When the clustering number is 

minK , the max-min distance method is used to select minK  

samples as the initial clustering center. Each additional a 
clustering number increases an initial clustering center in 
accordance with the principle of the max-min distance. 
Because the previous initial clustering center is unchanged, the 
clustering result is stable. The specific setting method is as 
below: 
 

1.Select the nearest one to sample means as the first initial 

clustering center 1v . 
 

2.When =2K , select the farthest one to 1v  as the second 

initial clustering center 2v . 
 

3.When max3 K K  , calculate the distance from samples 

that are not clustering center to every initial clustering center. 

ijd  represents the distance from the ith sample to the jth initial 

clustering center. Assuming 

 1 2 ( 1)max min( , ,..., )m i i i KD d d d  , select the mth 

sample as Kth initial clustering center. 
 
If the clustering number is too large, it will cause the number 
of background points obtained is too small. So we set upper 

limit max 6K   and lower limit min 2K  . Clustering 

number setting method is as follows:  
 

1.For 2 : 6K   
 

a. Initialize K  initial clustering centers according to the 
clustering center algorithm above; 
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b. Update clustering label T  and clustering center V  Using 
K-means algorithm; 

c. Check termination condition. If the condition is not met, 
go to b); 

d. Compute 
( )CH 

  index using clustering result. Go to 1). 
 

2.Take the K  value corresponding to maximum 
( )CH 

 

index as the optimal clustering number optK .  
 

3.Output the optimal clustering result and validity index. 
 

It’s important to note that the difference between optical flow 
orientations should not greater than  .  In this paper, the 

distance xyd  between sample x  and sample y  is defined as 

follows:  
 

2xy

x y x y
d

x y x y

   
 

   



 
 (5) 

 

Because the optical flow magnitude of a moving point 
significantly differ from the one of a static point, optical flow 
magnitude is used as a constraint to exclude the potential 
moving points in the background point set. The points whose 
optical flow magnitude is seriously off the average are 
discarded. 
 

Motion Recognition 
 

The motion recognition is performed according to the 
scatteredness in image coordinates of each cluster. Normally, a 
moving cluster is a continuous entity with a small 
scatteredness while a background cluster can spread in a wide 
region within the image, thus has a large scatteredness. We 
select the one with the largest scatteredness as background 
point set. In this study, the volume of the hyperellipsoid of a 
point cluster is used to measure the scatteredness. The 
distribution of a point cluster can be represented as a bivariate 
normal density function as follows: 
 

1

1 2

1
( ) exp (1 2)( )` ( )

2
p x x x      


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where  is the mean value,   is the 2 2  covariance matrix 

and 
1( )` ( )x x     is the squared Mahalanobis 

distance from x  to .  
 

The points with the same density probability have the same 
Mahalanobis distance, and are located on the same 
hyperellipsoid. Using the covariance matrix and Mahalanobis 
distance, the average volume of the hyperellipsoids of a cluster 
is defined as follows:  
 

1 2 2

1

1
( ) ( )

n

a v g i i
i

V x m x
n 

      (7) 

where n  is the features number of the cluster and ( )ix  is 

the covariance matrix of ix  and  
2( )im x  is the squared 

Mahalanobis distance from ix  to  . The eigenvectors and 

eigenvalues of the covariance matrix   determine the shape 

of the hyperellipsoid while the Mahalanobis distance m  
determines the radius of the hyperellipsoid. The volume of the 
hyperellipsoid indicates the scatteredness of the point cluster. 

The cluster with the greatest avgV  is selected as the 

background cluster in this work.  
 

BPS Algorithm Validation 
 

Experiments have been conducted on the public database 
KITTI (Karlsruhe Institute Technology and Toyota 
Technological Institute) (Geiger et al., 2012, Geiger et al., 
2013). Two typical traffic scenarios as shown in Figure 2(a) 
and 4(a) are selected as examples to evaluate the approach. 
The image resolution is 1241×376 pixels. The first scenario 
involves two oncoming cars and background like parked cars, 
buildings and trees, where the equipped vehicle moves in 
longitudinal direction. In the second scenario, the vehicle is 
turning right in a bend and the moving objects are two 
pedestrians and one car.  
 

The BPS extraction process for scenario 1 is shown in Figure 
2. Figure 2(a) shows left image of frame 1406 with feature 
points extracted by the KLT algorithm. Figure 2(b) isthe 
optical flow distribution of the detected feature points between 
frame 1406 and 1407. The positions of the feature points in 
frame 1406 and 1407 are marked with red “ ” and green “+”, 
respectively. Figure 2(c) is the histogram of the optical flow 
orientation. The horizontal axis shows the span of optical flow 

orientation, i.e., 0 2  radians, and the vertical axis 
represents the number of feature points within each interval. It 
can be seen that the optical flow orientation is mainly located 
in two regions: 5.81-0.40 radian and 3.02-3.55 radian. Figure 
2(d) shows the clustering result clustered by the self-adaptive 
K-means algorithm. It can be seen that feature points are 
divided into 2 clusters which are represented with the green 
and yellow. The green cluster is the background cluster while 
the yellow cluster is the foreground cluster. The clustering 
result after imposing the optical flow magnitude constraint is 
shown in Figure 2(e), which removes the points whose optical 
flow magnitude seriously deviate from the average.  
 

 
 

(a) 
 

 
 

(b) 

 
(c) 
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(d)                                                                            

 
(e) 

Figure 2   BPS extraction process for scenario 1. (a) Left image of frame 1406 
with feature points extracted by the KLT algorithm. (b) Optical flow 
distribution of the feature points between frame 1406 and 1407. (c) 

Histogram of optical flow orientation. (d) Clustering result clustered by the 
self-adaptive K-means algorithm. (e) Clustering result after imposing the 

optical flow magnitude constraint. 
 

The number of feature points and scatteredness of each cluster 
are shown in Table 1. The green cluster is selected as the 
background cluster because it has a greater scatteredness. 
 

Table 1 Feature point number and scatteredness for scenario 1. 
 

 
Green 
cluster 

Yellow 
cluster 

Feature point number 887 21 
Scatteredness 77387 5172 

 

Figure 3 shows the BPS extraction process for scenario 2. 
Figure 3(a) shows left image of frame 116 with feature points 
extracted by the KLT algorithm. Figure 3(b) is the optical flow 
distribution of the detected feature points between frame 116 
and 117.As shown in Figure 3(c), the optical flow orientations 
in scenario 2 are more dispersed than that in scenario 1. Figure 
3(d) shows the clustering result clustered by the self-adaptive 
K-means algorithm. It can be seen that the feature points are 
divided into 3 clusters represented with green, yellow and red. 
There is mixed phenomenon. The clustering result after 
imposing the optical flow magnitudes constraint is shown in 
Figure 3(e). As the figure shows, all the moving points on the 
pedestrian 2and car have been removed already.  
 

 
 

(a) 
 

 
 

(b) 
 

 
 
 
 
 

 
 

(c) 

 
(d) 

 
(e) 

Figure 3   BPS extraction process for scenario 2. (a) Left image of frame 116 
with feature points extracted by the KLT algorithm. (b) Optical flow 

distribution of the feature points between frame 116 and 117. (c) Histogram of 
optical flow orientation; (d) Clustering result clustered by the self-adaptive K-

means algorithm. (e) Clustering result after imposing the optical flow 
magnitude constraint. 

 

Table 2 shows the number of feature points and scatteredness 
of each cluster. The green cluster is selected as the background 
cluster. 
 

Table 2 Feature points number and scatteredness for scenario 2. 
 

 
Green 
cluster 

Yellow 
cluster 

Red 
cluster 

Feature point number 340 333 23 
Scatteredness 81685 27955 7014 

 

DISCUSSION AND CONCLUSIONS 
 

This paper presents a method of static feature points detection in 
dynamic scenes for visual odometry systems. The point set is 
selected by the BPS determination process which separates 
moving objects from background according to the optical flow 
orientation, and determines the background cluster according 
to the scatteredness. The approach presented here is tested on 
KITTI database. The experimental results demonstrate that the 
approach gives a precise detection result. The future work will 
try to apply the emerging feature detectors and descriptors in 
the proposed method to further improve the accuracy.    
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