

SOFTWARE POST BUG PREDICTION ANALYSIS OF ECLIPSE VERSIONS 2.0 AND 2.1 USING
FACTOR ANALYSIS AND LINEAR REGRESSION MODELING

Anurag Gupta

A R T I C L E I N F O

INTRODUCTION

There are various methods used in the Software Bug
Prediction Analysis such as Logistic Regression, Naive Bayes
(NB), k-Nearest Neighbor, Neural Network, Decision trees,
Support Vector Machines, Random Forest etc.

We have used Factor Analysis and linear regression model for
finding the most important factors for software bug prediction.
T. Zimmermann, R. Premraj, and A. Zeller
mapped defects from the bug database of Eclipse (one of the
largest open-source projects) to source code locations. The
resulting data set lists the number of pre-
defects for every package and file in the Eclipse releases 2.0,
2.1.

Several researchers used historical data without taking bug
databases into account. Khoshgoftaar et al
modules as defect-prone whenever the number of lines of code
added or deleted exceeded a threshold. Graves
sum of contributions to a module in its history to predict defect
density. Ostrand et al. [4] used historical data from up to 17 releases
to predict the files with the highest defect density in the next release.
Hudepohl et al. [5] predicted whether a module would be def
prone by combining metrics and historical data. From several
software metrics, Denaro et al. [6] learned logistic regression
models for Apache 1.3 and verified them against Apache 2.0.

International Journal of Current Advanced Research
ISSN: O: 2319-6475, ISSN: P: 2319-6505,
Available Online at www.journalijcar.org
Volume 7; Issue 5(I); May 2018; Page No.
DOI: http://dx.doi.org/10.24327/ijcar.2018

Copyright©2018 Anurag Gupta., Mayank Sharma and Amit Srivastava
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

Article History:

Received 10th February, 2018
Received in revised form 6th
March, 2018 Accepted 24th April, 2018
Published online 28th May, 2018

Key words:

Software Bug prediction, fault prone, factor
Analysis, Regression

*Corresponding author: Anurag Gupta
Amity University, Noida

SOFTWARE POST BUG PREDICTION ANALYSIS OF ECLIPSE VERSIONS 2.0 AND 2.1 USING
FACTOR ANALYSIS AND LINEAR REGRESSION MODELING

Anurag Gupta1., Mayank Sharma1 and Amit Srivastava

1Amity University, Noida
2Jaypee University, Noida

 A B S T R A C T

As Software’s are fault prone and there is a need to predetermine the chances of existence
of bugs while developing the software on the basis of Different Metrics/Factors which are
important. Through Bug prediction models, Software developers can know in advance
which factors are important so that they will make sure that Probability of coming of
Software Bugs post Release/Implementation is minimal/least. This Research paper
emphasizes mainly on prediction of the software post release bugs for the Eclipse Software.
In order to reduce the number of dimensions of the input feature vector, factor analysis
which uses concept of feature selection is applied and new matrix with lower number of
dimensions is used as input to general linear regression based prediction models. Finally
results are compared among different versions of Eclipse i.e., version 2.0 & 2.1 with
correlation based dimension selection process and empirical study was conducted to
compare prediction results.

There are various methods used in the Software Bug
Prediction Analysis such as Logistic Regression, Naive Bayes

Network, Decision trees,
rt Vector Machines, Random Forest etc.

We have used Factor Analysis and linear regression model for
finding the most important factors for software bug prediction.
T. Zimmermann, R. Premraj, and A. Zeller et al. [2] have

Eclipse (one of the
source code locations. The

- and post-release
package and file in the Eclipse releases 2.0,

al researchers used historical data without taking bug
et al. [1] classified

prone whenever the number of lines of code
old. Graves et al. [3] used the

tions to a module in its history to predict defect
. [4] used historical data from up to 17 releases

to predict the files with the highest defect density in the next release.
. [5] predicted whether a module would be defect-

by combining metrics and historical data. From several
. [6] learned logistic regression

against Apache 2.0.

Factor Analysis based on covariance and feature selection
methodology is used for the reduction of number of variables.
Bug Findings is very important for any software to be
implemented and maintained.
detection and diagnosis (FDD) aims to determine whether a
software module is faulty, or to estimate the probability that it
has at least one fault, defined as fault
from the FDD of mechanical and electronic systems
proneness prediction of software modules has no measurement
data from sensors as their predictive
software measures such as static code or design metrics as
predictors. To predict the fault
dataset that includes software metrics and the fault proneness
state (fault-free or faulty) of the instance
agreed that the more faults a module has, the more likely that it
will fail in operation. In this paper, we have
Selection using factor analysis for reducing the number of
factors and then used the linear regression mod
the best factors which helps software developers
Software bugs for further versions of Eclipse.

Feature Selection

Feature selection is the study of algorithms for reducing
dimensionality of data to improve machine learning
performance. For a dataset with
(or features, attributes), feature selection aims to reduce
M’ and M’ ≤ M (Sammut and Webb 2011). It is an important
and widely used approach to dimensionality reduction.
Another effective approach is feature extraction. One of the
key distinctions of the two approaches lies at their outcomes.

International Journal of Current Advanced Research
6505, Impact Factor: 6.614

www.journalijcar.org
; Page No. 12849-12851

//dx.doi.org/10.24327/ijcar.2018.12851.2274

ank Sharma and Amit Srivastava. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

SOFTWARE POST BUG PREDICTION ANALYSIS OF ECLIPSE VERSIONS 2.0 AND 2.1 USING
FACTOR ANALYSIS AND LINEAR REGRESSION MODELING

Amit Srivastava2

As Software’s are fault prone and there is a need to predetermine the chances of existence
the basis of Different Metrics/Factors which are

important. Through Bug prediction models, Software developers can know in advance
which factors are important so that they will make sure that Probability of coming of

on is minimal/least. This Research paper
emphasizes mainly on prediction of the software post release bugs for the Eclipse Software.
In order to reduce the number of dimensions of the input feature vector, factor analysis

ction is applied and new matrix with lower number of
dimensions is used as input to general linear regression based prediction models. Finally
results are compared among different versions of Eclipse i.e., version 2.0 & 2.1 with

selection process and empirical study was conducted to

Factor Analysis based on covariance and feature selection
odology is used for the reduction of number of variables.
Findings is very important for any software to be

implemented and maintained. In software engineering, fault
detection and diagnosis (FDD) aims to determine whether a

or to estimate the probability that it
has at least one fault, defined as fault-proneness. Different

chanical and electronic systems, fault-
proneness prediction of software modules has no measurement
data from sensors as their predictive features but rather it has
software measures such as static code or design metrics as

To predict the fault-proneness, we need a training
dataset that includes software metrics and the fault proneness

ree or faulty) of the instances but it is usually
agreed that the more faults a module has, the more likely that it
will fail in operation. In this paper, we have used the feature

using factor analysis for reducing the number of
factors and then used the linear regression model for checking

hich helps software developers in finding the
Software bugs for further versions of Eclipse.

Feature selection is the study of algorithms for reducing
dimensionality of data to improve machine learning
performance. For a dataset with N features and M dimensions
(or features, attributes), feature selection aims to reduce M to

(Sammut and Webb 2011). It is an important
and widely used approach to dimensionality reduction.

proach is feature extraction. One of the
key distinctions of the two approaches lies at their outcomes.

Research Article

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Software Post Bug Prediction Analysis of Eclipse Versions 2.0 and 2.1 Using Factor Analysis and Linear Regression Modeling

 12850

Assuming we have four features F1, F2, F3, F4, if both
approaches result in 2 features, the 2 selected features are a
subset of 4 original features (say, F1, F3), but the 2 extracted
features are some combination of the 4 original features.
Feature selection is commonly used in applications where
original features need to be retained. Some examples are
document categorization, medical diagnosis and prognosis as
well as gene-expression profiling. The benefits of feature
selection are multifold: it helps improve machine learning in
terms of predictive accuracy, comprehensibility, learning
efficiency, compact models, and effective data collection. The
objective of feature selection is to remove irrelevant and/or
redundant features and retain only relevant features.

We have Covariance calculation using correlation coefficient
used in the Factor Analysis.

Instead of using only covariance between variables we used
correlation coefficient which is the ratio of covariance
between two variables divided by the standard deviation of
each variable calculated using the below equation.

ρ(x,y) = cov(x,y) / σ(x).σ(y)

Factor Analysis is done on the dimensions and then we found
some Factors for the prediction of Bugs in the Software .After
finding the factors we have applied the Linear regression for
getting the dependency on the independent factors came using
factor Analysis. After the components have been chosen and
the matrix has been set, the matrix of correlations (in general
case –n matrices) between parameters can be calculated.
Factor analysis transforms this matrix to the matrix of factors,
where each of them reflects a set of components connected to a
one system-forming element and represents a system-forming
connection of elements. It is important to note that by using the
technique of principal components all factors become
orthogonal and caused by different properties of the system.
Hence, we can see that the factor analysis follows the logic of
the above mentioned theoretical ideas and their principles.

Data Description

Data consists of one file for each level (files, packages) and
release (2.0, 2.1). Each case contains the following
information:

Name: The name of the file, respectively, to which this case
corresponds. It can be used to identify the source code in the
release and may be needed for additional data collection.

Pre-release defects: The number of non-trivial defects that
were reported in the last six months before release.

Post-release defects: The number of non-trivial defects that
were reported in the first six months after release.

Complexity metrics: We computed for each case several
complexity metrics. Metrics that are Computed for classes or
methods are aggregate by using average (avg), maximum
(max), and accumulation (sum) to file and package level.

Summary of Data set we have taken is:

Project: Eclipse (eclipse.org)
Content: Defect counts (pre- and post-release)
Releases: Version 2.0, 2.1
Level: Packages and files
URL: http://www.st.cs.uni-sb.de/softevo/bug-data/eclipseNo.
More data: Eclipse source code (for archived releases):

http://archive.eclipse.org/eclipse/downloads/

Different metrics are used (No. given in Table 1) such as
Assignment,, Block, Comment Boolean Literal, Break
Statement, Cast Expression, CatchClause, Character Literal,
TOC,, Compilation Unit, Conditional ExpresoConstructor
Invocation, Continue Statement, DoStatement are used.

Analysis

Analysis is being done on two versions of Eclipse 2.0 and 2.1
by using factor Analysis and then we used Linear Regression
Modeling in SPSS to get the best factors which are most
important for the Bug Prediction for coming versions of the
Eclipse.

Table 2 Adjusted R Square Values for two versions of eclipse

Model Summary

Eclipse
Version

R R Square
Adjusted R

Square

Std. Error
of the

Estimate
2.0 .634 .403 .392 .719
2.1 .634 .401 .391 .719

Adjusted R-Square - A version of R-Squared that has been
adjusted for the number of predictors in the model. R-Squared
tends to over estimate the strength of the association especially
if the model has more than one independent variable.

In our Comparative Analysis in Table no. 2 Adjusted R Square
is almost same in all the two versions. Standard error for all
the two versions are almost same .791 for version 2.0 and
version 2.1

Analysis of Variance (ANOVA) consists of calculations that
provide information about levels of variability within a
regression model and form a basis for tests of significance.
The regression line concept, DATA = FIT + RESIDUAL, is
rewritten as follows:

(yi -) = (i -) + (yi - i).

The first term is the total variation in the response y, the
second term is the variation in mean response, and the third
term is the residual value. Squaring each of these terms and
adding over all of the n observations gives the equation

(yi -)² = (i -)² + (yi - i)².

This equation may also be written as SST = SSM + SSE,
where SS is notation for sum of squares and T, M, and E are
notation for total, model, and error, respectively.

The square of the sample correlation is equal to the ratio of the
model sum of squares to the total sum of squares:
r² = SSM/SST.

Table 1 No. of metrics and files Initially Taken

Version No
Number of
Complexity Metrics

No. of files

Eclipse 2.0 218 6729
Eclipse 2.1 256 6729

International Journal of Current Advanced Research Vol 7, Issue 5(I), pp 12849-12851, May 2018

12851

This formalizes the interpretation of r² as explaining the
fraction of variability in the data explained by the regression
model.

The sample variance sy² is equal to

 (yi -)²/(n - 1) = SST/DFT,
the total sum of squares divided by the total degrees of
freedom (DFT). For simple linear regression, the MSM (mean

square model) = (i -)² / (1) = SSM/DFM, since the
simple linear regression model has one explanatory variable x.

The corresponding MSE (mean square error) =

(yi - i)²/(n - 2) = SSE/DFE, the estimate of the

variance about the population regression line (²).

ANOVA calculations are displayed in an analysis of variance
Table 3, which has the following format for simple linear
regression:

Table 4 shows that F test comes out to be same for both the
versions and having almost the same value.

RESULT

Table 5 Shortlisted Factors Having Significance Level
Between .000 And .003 And Then Common Factors Among

Two Versions

S No. Eclipse Version 2.0 Eclipse Version 2.1 Intersection
1 NOF_MAX NBD_SUM NSM_AVG
2 NSM_AVG NOM_SUM BLOCK
3 BLOCK NSM_AVG QUALIFIEDNAME
4 QUALIFIEDNAME BLOCK TRYSTATEMENT
5 TRYSTATEMENT FIELDDECLARATION PRE
6 PRE IFSTATEMENT NBD_SUM
7 NBD_SUM TRYSTATEMENT IFSTATEMENT
8 NOF_AVG NULLLITERAL TLOC
9 ARRAYINITIALIZER QUALIFIEDNAME MODIFIER

10 CATCHCLAUSE MODIFIER NUMBERLITERAL
11 IFSTATEMENT TLOC NOM_SUM

12
IMPORTDECLARAT

ION
PRE

13 STRINGLITERAL NORM_FIELDACCESS

14
VARIABLEDECLAR
ATIONFRAGMENT

NBD_MAX

15
NORM_THISEXPRE

SSION
VG_MAX

16 TLOC NUMBERLITERAL
17 MODIFIER

18 ASSIGNMENT
19 NOM_SUM
20 ARRAY_CREATION
21 MLOC_MAX

22
NORM_THROWSTA

TEMENT
23 NORM_BLOCK
24 NUMBERLITERAL

25
EXPRESSIONSTATE

MENT

Table 5 displays Total No of factors coming from Factor
Analysis & Significance Level Between .000 And .003 in
Eclipse version 2.0 are 25 & Total No of factors coming from
Factor Analysis & Significance Level Between .000 And .003
in Eclipse version 2.1 are 16.

This table also shows the intersection of the factors from
version 2.0 and version 2.1 in the fourth column which are
common factors and these comes out eleven These eleven
factors are to be considered the most important and prone to
Bugs post software release.

CONCLUSION

After the Analysis we come to the conclusion that Eleven
predictors NSM_AVG, BLOCK, QUALIFIEDNAME,
TRYSTATEMENT, PRE, NBD_SUM, IFSTATEMENT,
TLOC, MODIFIER, NUMBERLITERAL, NOM_SUM are
most important and useful for the prediction of Software Bugs.

References

1. T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi, and J.
McMullan, "Detection of software modules with high
debug code churn in a very large legacy system." in ISSRE
'96: Proceedings of the The Seventh International
Symposium on Software Reliability Engineering (ISSRE
'96), Washington, DC, USA, 1996, p. 364.

2. T. Zimmermann, R. Premraj, and A. Zeller,” Predicting
Defects for Eclipse.” PROMISE '07 Proceedings of the
Third International Workshop on Predictor Models in
Software Engineering.

3. T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy,
"Predicting fault incidence using software change history."
IEEE Transactions on Software Engineering, vol. 26,
2000.

4. T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Predicting
the location and number of faults in large software
systems." IEEE Trans. Software Eng., vol. 31, pp. 340-
355, 2005..

5. J. P. Hudepohl, S. J. Aud, T. M. Khoshgoftaar, E. B. Allen,
and J. Mayrand, "Emerald: Software metrics and models
on the desktop." IEEE Software, vol. 13, pp. 56-60,
September 1996.

6. G. Denaro and M. Pezzè, "An empirical evaluation of
fault-proneness models." in Proceedings of the
International Conference on Software Engineering (ICSE
2002), Orlando, Florida, USA, 2002, pp. 241-251.

7. A. T. Nguyen, T. T. Nguyen, J. AI-Kofahi, H. V. Nguyen
and T. N. Nguyen, "A topic-based approach for narrowing
the search space of buggy files from a bug report", ASE
'11, pp. 263-272.

Table 3 General Anova Table

Source Sum of squares
Degrees

of
freedom

Mean
Square

F

Model
(i-)²

1 SSM/DFM

MSM /
MSE

Error
(yi- i)²

n-2 SSE/DFE

Total
(yi-)²

n-1 SST/DFT

Table 4 ANOVA TABLE for two versions of eclipse

ANOVAa

Eclipse Version
Sum of
Squares

df
Mean

Square
F Sig.

2.0
Regression 2301.853 113 20.370 39.439 .000b
Residual 3416.695 6615 .517

Total 5718.548 6728

2.1
Regression 2295.410 110 20.867 40.343 .000b
Residual 3423.138 6618 .517

Total 5718.548 6728

