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A R T I C L E  I N F O                              

 

INTRODUCTION 
 

In this paper the work deals with the existence and locally 
attractivity of solutions to the following second order 
Nonlinear Differential equation (SNDE). 
 

��
� �

�(�)

���,�(�),���(�)��
� = � ��, �(�), ���(�)�� , �

�(0) = 0 
 

Where, �: ℝ� × ℝ × ℝ → ℝ − {0}, �: ℝ� ×
�, �: ℝ� → ℝ 
 

We use hybrid fixed point theory formulated by B. C. Dhage 
for the existence of solution of the SNDE (1) and we prove 
that all the solutions are locally attractive. 
 

Finally we present an example illustrating the applicability of 
the imposed conditions 
 

By a solution of SNDE (1) we mean a function 
��(ℝ�, ℝ)  such that: 

1. The function � → �
�(�)

�(�,�(�),�[�(�)])

continuous for each� ∈ ℝ. 
2. � satisfies (1) 
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                             A B S T R A C T  
 

 

In this paper, we prove the existence the locally attractive solution and existence the 
extremal solution for a second order nonlinear differential equation in Banach space under 
lipschitz and Caratheodory conditions via a hybrid fixed point theorem.
 
 
 
 
 
 
 
 
 
 
 
 
 

In this paper the work deals with the existence and locally 
attractivity of solutions to the following second order 

�� � ∈ ℝ��            (1) 

× ℝ × ℝ → ℝ And 

We use hybrid fixed point theory formulated by B. C. Dhage 
for the existence of solution of the SNDE (1) and we prove 

example illustrating the applicability of 

By a solution of SNDE (1) we mean a function � ∈

( )])
� is absolutely 

Auxiliary Results 
 

In this section we give the definitions, notation, hypothesis and 
preliminary tools, which will be used in the sequel.
 

Let � = ��(ℝ�, ℝ)  be the space of absolutely continuous 
function on ℝ�  and Ω be a subset of
�: � → � be an operator and consider the following operator 
equation in � namely, �(�)
(1)  
 

Below we give some different characterization of the solutions 
for operator equation (2.1) on 
definitions. 
 

Definition: We say that solution of the equation (2.1) are 

locally attractive if there exists a closed ball  
space ��(ℝ�, ℝ)for some ��

number � > 0 such that for arbitrary solution 

� = �(�) of equation (2.1) belonging to 

that   lim�→���(�) − �(�)� = 0
   

Definition: Let �  be a Banach space. A mapping 
called Lipschitz if there is a constant 
��‖ ≤ �‖� − �‖for all �, � ∈
contraction on � with the contraction constant
 

Definition: An operator ℚ on a Banach space 
called compact if for any bounded subset 
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In this paper, we prove the existence the locally attractive solution and existence the 
extremal solution for a second order nonlinear differential equation in Banach space under 

via a hybrid fixed point theorem. 

this section we give the definitions, notation, hypothesis and 
preliminary tools, which will be used in the sequel. 

be the space of absolutely continuous 
be a subset of �. Let a mapping 

d consider the following operator 
( ) = (��)(�), for all � ∈ ℝ�                                                                            

Below we give some different characterization of the solutions 
on ℝ�. We need the following 

We say that solution of the equation (2.1) are 

locally attractive if there exists a closed ball  ��(0) in the 
∈ ��(ℝ�, ℝ)and for some real 

such that for arbitrary solution � = �(�) and 

of equation (2.1) belonging to ��(0) ∩ Ω we have 

� 0(2)                   

be a Banach space. A mapping �: � → � is 
called Lipschitz if there is a constant � > 0 such that,‖�� −

∈ �. If � < 1, then � is called a 
with the contraction constant  �. 

on a Banach space � into itself is 
called compact if for any bounded subset � of �, ℚ(�) is 
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relatively compact subset of �. If ℚ is continuous and 
compact, then it is called completely continuous on �. 
 

Definition: Let � be a Banach space with the norm ‖∙‖ and let 
ℚ: � → �, be an operator (in general nonlinear). Then ℚ is 
called 
 

1. Compact if ℚ(�) is relatively compact subset of �. 
2. Totally compact if ℚ(�) is totally bounded subset of � 

for any bounded subset �  of � . 
3. Completely continuous if it is continuous and totally 

bounded operator on  �. 
 

It is clear that every compact operator is totally bounded but 
the converse need not be true. 
 

We seek the solution of (1) in the space ��(ℝ�, ℝ)of 
continuous and real – valued function defined on ℝ� . Define a 
standard norm ‖∙‖ and a multiplication “ ∙ ” in ��(ℝ�, ℝ) by 
‖�‖ = ���{|�(�)|: � ∈ ℝ�},   (��)(�) = �(�)�(�),   � ∈ ℝ�                                                  
(3) 
 

Clearly ��(ℝ�, ℝ)becomes a Banach space with respect to 
the above norm and the multiplication in it. By ℒ�(ℝ�, ℝ) we 
denote the space of Lebesgue-integrable function ℝ�with the 

norm ‖∙‖ℒ�  defined by ‖�‖ℒ = ∫ |�(�)|��
�

�
  (4) 

 

Definition: Let � ∈ ℒ�[0, �]and � > 0. The Riemann – 
Liouville fractional derivative of order � of real function � is 

defined as ���(�) =
�

�(�� �)

�

��
∫

�(�)

(�� �)� ��     ,     0 < � < 1
�

�
 

Such that �� ��(�) = ���(�) =
�

�(�)
∫

�(�)

(�� �)�� � ��  
�

�
respectively. 

 

Definition: The Riemann-Liouville fractional integral of order 
� ∈ (0,1) of the function � ∈ ℒ�[0, �] is defined by the 

formula:  ���(�) =
�

�(�)
∫

�(�)

(�� �)�� � �� ,    � ∈ [0, �]
�

�
 

 

where Γ(�) denote the Euler gamma function. The Riemann-
Liouville fractional derivative operator of order �  defined by 

�� =
��

�� � =
�

��
°��� �.It may be shown that the fractional 

integral operator �� transforms the space ℒ�(ℝ�, ℝ) into itself 
and has some other properties. 
 

Theorem: (Arzela-Ascoli Theorem) If every uniformly 
bounded and equicontinuous sequence {�� } of functions 
in�(ℝ�, ℝ), then it has a convergent subsequence. 
 

Theorem: A metric space X is compact iff every sequence in 
X has a convergent subsequence. 
 

Theorem: Let � be a non-empty, bounded and closed-convex 
subset of the Banach space � and let �: � → � and � : � → � 
are two operators satisfying: 
 

1. � is Lipschitz with a lipschitz constant �, 
2. �  is completely continuous, and 
3. ���� ∈ � for all � ∈ �, and 
4. �� < 1 where � = ‖� (�)‖: sup {‖�� ‖: � ∈ �}.Then 

the operator equation ���� = � has a solution in �. 
 

Existence of solutions 
 

Definition: A mapping �: ℝ� × ℝ × ℝ → ℝ is Caratheodory 
if: 
 

1. � → �(�, �, �) is measurable for each �, � ∈ ℝ and 
2. (�, �) → �(�, �, �)is continuous almost everywhere for 

� ∈ ℝ�. 

Furthermore a Caratheodary function � is ℒ� −Caratheodary 
if: 
3. For each real number � > 0 there exists a function 

� � ∈ ℒ�(ℝ�, ℝ)such 
that|�(�, �, �)| ≤ � �(�)   �.�.   � ∈ ℝ� for all � ∈ ℝ 
with |�|� ≤ � and |�|� ≤ r. 

Finally a caratheodary function � is ℒ�
� −caratheodary if: 

4. There exists a function � ∈ ℒ�(ℝ�, ℝ) such that 
|�(�, �, �)| ≤ � (�),    �.�.   � ∈ ℝ� for all �, � ∈ ℝ 

For convenience, the function �  is referred to as a bound 
function for �. 

 

We will need the following hypothesis. 
(� �) The functions  �, �: ℝ� → ℝ are continuous. 
(� �) The function �: ℝ� × ℝ × ℝ → ℝ − {0}  is continuous 
and bounded with bound 

� = ���
��,�(�),���(�)��∈ℝ� ×ℝ×ℝ

�� ��, �(�), ���(�)��� there 

exist a bounded function  �: ℝ� → ℝ   with bound �  satisfying 

�� ��, �(�), ���(�)�� − � ��, �(�), ���(�)��� 

≤ �(�)��� �|�(�) − �(�)|, ����(�)� − ���(�)���, �.�.  � ∈

ℝ� for all �, � ∈ ℝ. 
 

(� �) The function �: ℝ� × ℝ × ℝ → ℝ is satisfying 
caratheodory condition with continuous function ℎ(�): ℝ� →
ℝ such that �(�, �, �) ≤ ℎ(�) ∀� ∈ ℝ� and  �, � ∈ ℝ. 
(� �) The function �: ℝ� → ℝ defined by the formulas 

�(�) = ∫ (� − �)ℎ(�)
�

�
�� is bounded on ℝ� and vanish at 

infinity, that is lim�→� �(�) = 0. 
 

Remark: Note that the (� �) − (� �) hold, then there exists a 
constant �� > 0 such that �� = sup {�(�): � ∈ ℝ�} 
 

Lemma: Suppose that � ∈ (0,1) and the function  �, � 
satisfying SNDE (1.1) then �  is the solution of the SNDE (1) 
if and only if it is the solution of integral equation  
 

�(�) = �� ��, �(�), ���(�)��� �∫ (� − �)� ��, �(�), ���(�)�� ��
�

�
�  � ∈ ℝ�  (3) 

Proof: Integrating equation (1.1) of second order, we get 
 

��� �
�(�)

� ��, �(�), ���(�)��
�

�

�

= ��� ��, �(�), ���(�)��� 

⇒ � �
�(�)

� ��, �(�), ���(�)��
�

�

�

= ��� ��, �(�), ���(�)��� 

⇒ � �
�(�)

� ��, �(�), ���(�)��
�

�

�

= ��� ��, �(�), ���(�)��� 

⇒ � �
�(�)

���,�(�),���(�)��
� = ��� ��, �(�), ���(�)���, 

Again integrating, we get 

  �
�(�)

���,�(�),���(�)��
� = �� �� ��, �(�), ���(�)��� 

                    

�(�) = �� ��, �(�), ���(�)��� �∫ ∫ � ��, �(�), ���(�)�� ��
�

�

�

�
� 

                    �(�) = �� ��, �(�), ���(�)���
�

(�� �)!
∫ (� −

�

�

�)� ��, �(�), ���(�)�� �� 

                    �(�) = �� ��, �(�), ���(�)��� �∫ (� −
�

�

�)� ��, �(�), ���(�)�� ��� ,   � ∈ ℝ� 
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Since∫ �(�)��� = ∫
(�� �)� � �

(� � �)!
�(�)��

�

�

�

�
, Where � =

0,1,2,3, … … … . 
Conversely differentiate (3.1) w.r.to �, we get, 
 

� �
�(�)

� ��, �(�), ���(�)��
�= ��(� − �)� ��, �(�), ���(�)�� 

� �
�(�)

� ��, �(�), ���(�)��
�= (� − �)� ��, �(�), ���(�)�� 

Again differentiating, we get, 
 

�� �
�(�)

� ��, �(�), ���(�)��
�= 1� ��, �(�), ���(�)�� 

 

�� �
�(�)

� ��, �(�), ���(�)��
�=     � ��, �(�), ���(�)�� 

 

Theorem: Assume that condition (� �-� �) hold. Further if 
� �� < 1, where �� is defined in remark (3.1). Then SNDE 
(1.1) has a solution in the space��(ℝ�, ℝ), moreover solution 
of (1.1) are locally attractive on ℝ�. 
 

Proof: By a solution of SNDE (1.1) we mean a continuous 
function �: ℝ� → ℝ that satisfies SNDE (1) onℝ� . Set 

� = ��(ℝ�, ℝ) and define a subset ��(0) of   �  as��(0) =
{� ∈ �: ‖�‖ ≤ �}.where � satisfies the inequality, �� � ≤ �. 
Let � = ��(ℝ�, ℝ) be Banach algebra of all absolutely 
continuous real-valued function on ℝ� with the norm ‖�‖ =
���|�(�)|, � ∈  ℝ�      (2) 
 

We shall obtain the solution of SNDE (1) under some suitable 
conditions involved in (1). Now the SNDE (1)  is equivalent to 
the SNIE 

�(�) = �� ��, �(�), ���(�)��� �� (�
�

�

− �)� ��, �(�), ���(�)�� ��� 

Let us define the two mappings �: � → �and � : ��(0) → � 
by 

��(�) = � ��, �(�), ���(�)�� , � ∈ ℝ�                                  (3) 

�� (�) = ∫ (� − �)� ��, �(�), ���(�)�� ��
�

�
 , � ∈ ℝ�            (4) 

Thus from the SNDE (1.1), we obtain the operator equation as 
follows: 
 

�(�) = ��(�)�� (�) , � ∈ ℝ�                                                 (5) 
 

If the operator �and �  satisfy all the hypothesis of theorem 

(3), then the operator equation (5) has a solution on ��(0). 
 

Step I: Firstly we show that � is Lipschitz on  ��(0)  Let 

�, � ∈ ��(0); then  

|��(�) − ��(�)| ≤ �� ��, �(�), ���(�)��

− � ��, �(�), ���(�)��� 

                                                   ≤   �(�)��� �|�(�) −

�(�)|, ����(�)� − ���(�)��� 
 

≤  �(�)|�(�) − �(�)| for all � ∈ ℝ� 
Taking suprimum over  �   we get, 

‖�� − ��‖ ≤ ‖� ‖‖� − �‖ for all �, � ∈ ��(0) 

Thus, � is Lipchitz on ��(0) with Lipschitz constant � . 
 

Step II: Secondly we show that �  is completely continuous 

operator on ��(0) using standard argument such as those in 
Granas at [4], it can be shown that  �  is continuous operator 

on ��(0). To do this, let us fix arbitrary � > 0 and take 

�, � ∈ ��(0)  such that ‖� − �‖ ≤ �. 

 |�� (�) − �� (�)| = �
∫ (� − �)� ��, �(�), ���(�)�� �� −

�

�

∫ (� − �)� ��, �(�), ���(�)�� ��
�

�

� 

                              ≤ �∫ (� − �)� ��, �(�), ���(�)�� ��
�

�
�+  

                                  �∫ (� − �)� ��, �(�), ���(�)�� ��
�

�
� 

                              ≤ ∫ (� − �)ℎ(�)
�

�
�� + ∫ (� − �)ℎ(�)

�

�
�� ≤

2 ∫ (� − �)ℎ(�)
�

�
��    

≤ 2�(�),As  �(�) ≤
�

�
, |�� (�) − �� (�)| ≤ �. 

Thus �  is continuous. 
 

Now we will show that � ���(0)� is uniformly bounded and 

equicontinuous set in  ��(0) . Since � ��, �(�), ���(�)�� is 

ℒ�
� − caratheodary, we have 

 |�� (�)| = �∫ (� − �)� ��, �(�), ���(�)�� ��
�

�
� 

               ≤ ∫ (� − �) �� ��, �(�), ���(�)�����
�

�
≤

∫ (� − �)ℎ(�)��
�

�
≤ �(�)                                                                                 

 Taking suprimum over t, we obtain, ‖�� ‖ ≤ �� for all 

� ∈ ��(0), 
 

Where, �� = ����∈ℝ�
{�(�)}. This shows that � ���(0)� is 

uniformly bounded set in  �. 
 

To show that � ���(0)� is an equicontinuous set, let ��, �� ∈

ℝ� be arbitrary. Then for any � ∈ ��(0), 
 

|�� (��) − �� (��)| =

�

�� (�� − �)� ��, �(�), ���(�)�� �� −

��

�

� (�� − �)� ��, �(�), ���(�)�� ��

��

�

�

�

 

≤ �� (�� − �)� ��, �(�), ���(�)�� ��
��

�

− � (�� − �)� ��, �(�), ���(�)�� ��
��

�

� 

+ �� (�� − �)� ��, �(�), ���(�)�� ��
��

�

− � (�� − �)� ��, �(�), ���(�)�� ��
��

�

� 

≤ �� (�� − �)ℎ(�)��
��

�

− � (�� − �)ℎ(�)��
��

�

�

+ �� (�� − �)ℎ(�)��
��

�

− � (�� − �)ℎ(�)��
��

�

� 

 ≤ ‖ℎ‖ℒ� ��∫ [(�� − �) − (�� − �)]��
��

�
�+ �∫ (�� − �)��

��

��
�� 
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≤ ‖h‖ℒ� ���−
(�� − �)�

2
�

�

��

− �−
(�� − �)�

2
�

�

��

�

+ ��−
(�� − �)�

2
�

��

��

�� 

≤
‖ℎ‖ℒ�

2
�
|−[(�� − ��)� − (�� − 0)�] − [−(�� − ��)� + (�� − 0)�]| +

[−(�� − ��)� + (�� − ��)�]
� 

≤
‖ℎ‖ℒ�

2
{|−(��)� + (��)� + (�� − ��)�| + |−(�� − ��)�|} 

 

The right hand side of the above inequality doesn’t depend on 
X and tends to zero. 
 

Therefore |� �(��) − �� (��)| → 0 as �� → ��. 

Hence, � ���(0)� is an equicontinuous set and so � ���(0)� is 
relatively compact by Arzela-Ascoli theorem. As a 
consequence, �  is compact and continuous operator on 

���(0)�. 
 

Thus �  is completely continuous on  ���(0)� . 

Step III: To show  � = ���� ⟹ � ∈ ��(0), ∀� ∈ ��(0) 

Let � ∈ �, and � ∈ ��(0) such that  � = ���� , By 
assumptions (ℋ 1, ℋ 2, ℋ 3) 
               |�(�)| = |��(�)�� (�)| ≤ |��(�)||�� (�)| 
                          

≤ �� ��, �(�), ���(�)����∫ (� − �)� ��, �(�), ���(�)�� ��
�

�
� 

                          

≤ �� ��, �(�), ���(�)���∫ (� − �) �� ��, �(�), ���(�)�����
�

�
 

                          ≤ � ∫ (� − �)ℎ(�)��
�

�
≤ �� (�) 

Taking supremum over t on  ℝ�, we obtain ‖���� ‖ ≤ �� � ,

∀� ∈ ��(0) 
 

That is we have,  ‖�‖ = ‖���� ‖ ≤ �, ∀� ∈ ��(0). 
Hence assumption (�) of theorem (2.3) is proved. 
 

Step IV:  Also we have  
 

� = �� ���(0)�� = ����‖�� ‖: � ∈ ���(0)�� 
                              

= ��� �
����∈ℝ�

�∫ (� − �)� ��, �(�), ���(�)�� ��
�

�
�

: � ∈ ���(0)�
� 

≤ ��� �����∈ℝ�
�� (� − �)ℎ(�)��

�

�

� : � ∈ ���(0)�� 

≤ ��� �����∈ℝ�
[�(�)]: � ∈ ���(0)�� ≤ �� 

and therefore �� = � �� < 1 
Thus the condition (d) of theorem (2.3) is satisfied. 
 

Hence all the conditions of theorem (2.3) are satisfied and 
therefore the operator equation ���� = � has a solution in 

���(0)� . As a result, the SNDE (1.1) has a solution defined 

on ℝ� .Step V: Finally we show the locally attractivity of the 
solution for SNDE (1.1). Let � and � be two solutions of 

SNDE (1.1) in ���(0)�  defined on ℝ� . Then we have  
 

|�(�) − �(�)| =

�
�� ��, �(�), ���(�)��� �∫ (� − �)� ��, �(�), ���(�)�� ��

�

�
� −

�� ��, �(�), ���(�)��� �∫ (� − �)� ��, �(�), ���(�)�� ��
�

�
�

� 

                    
≤

��� ��, �(�), ���(�)��� �∫ (� − �)� ��, �(�), ���(�)�� ��
�

�
��+    

                            ��� ��, �(�), ���(�)��� �∫ (� −
�

�

�)� ��, �(�), ���(�)�� ���� 

                        

≤ �� ��, �(�), ���(�)���∫ (� − �) �� ��, �(�), ���(�)���
�

�
�� +  

                            

�� ��, �(�), ���(�)���∫ (� − �) �� ��, �(�), ���(�)���
�

�
�� 

≤ � �� (� − �)ℎ(�)

�

�

��� + � �� (� − �)ℎ(�)

�

�

��� 

 

≤ 2� � (� − �)ℎ(�)

�

�

�� ≤ 2�[�(�)] 

Since lim�→� �(�) = 0 for � > 0, there is real number � > 0 
such that 
 

�(�) ≤
�

��
 for all  � ≥ � . Then from above inequality it follows 

that 
|�(�) − �(�)| < � for all  � ≥ � .  This completes the proof. 
 

Existence of extremal solutions 
 

A closed and non-empty set  �    in a Banach Algebra  �  is 
called a cone if  
 

1. � + � ⊆ �  
2. ℷ� ⊆ �   for  ℷ ∈ ℝ, ℷ ≥ 0  
3. {−� } ∩ � = 0where 0 is the zero element of  �. 
4. and is called positive cone if  
5. � ∘� ⊆ �  

 

And the notation  ∘  is a multiplication composition in  � 
We introduce an order relation  ≤  in �  as follows. 
 

Let �, � ∈ �  then � ≤ �  if and only if � − � ∈ � . A cone �   
is called normal if the norm   ‖∙‖  is monotone increasing on 
� .  It is known that if the cone   �   is normal in  �  then every 
order-bounded set in  �  is norm-bounded set in  �. 
 

We equip the space  �(ℝ�, ℝ)  of continuous real valued 
function on  ℝ�  with the order relation   ≤  with the help of 
cone defined by,  
 

� = {� ∈ �(ℝ�, ℝ): �(�) ≥ 0 ∀� ∈ ℝ�}                           (4.1) 
 

We well known that the cone  �   is normal and positive in  
�(ℝ�, ℝ). As a result of positivity of the cone  �   we have:  
 

Lemma[2]:  Let � �, � �, ��, �� ∈ �   be such that   � � ≤ ��  
and  � � ≤ ��then  � �� � ≤ ����. 
 

For any  � , � ∈ � = �(ℝ�, ℝ), � ≤ �    the order interval 
[� , �] is a set in � given by,  
 

  [� , �] = {� ∈ �: � ≤ � ≤ �}                                         (4.2) 
 

Definition[2]: A mapping �: [� , �] → � is said to be 
nondecreasing or monotone increasing if  � ≤ � implies  
�� ≤ ��  for all  �, � ∈ [� , �]. 
 

For proving the existence of extremal solutions of the 
equations (1.1) under certain monotonicity conditions by using 
following fixed pint theorem of Dhage [2] 
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Theorem 4.1 [2]: Let  �   be a cone in Banach Algebra  �  and 
let [� , �] ∈ �.  Suppose that  �, � : [� , �] → �   are two 
operators such that 
 

1. �  is a Lipschitz with Lipschitz constant �, 
2. �   is completely continuous, 
3. ���� ∈ [� , �]  for each � ∈ [� , �]  and 
4. �and�   are nondecreasing. 

 

Further if the cone �   is normal and positive then the operator 
equation  ���� = �  has the least and greatest positive 
solution in  [� , �]  whenever  �� < 1,  where  � =
‖� ([� , �])‖ = ���{‖�� ‖: � ∈ [� , �]} 
 

We need following definitions and hypothesis for existence the 
extremal solution of second order nonlinear differential 
equation (SNDE) (1.1) 
 

Definition: A function  � ∈ ��(ℝ�, ℝ)  is called a lower 
solution of the SNDE (1.1) on  ℝ�  if the function  � →

� (�)

���,� (�),� ��(�)��
  is continuous and  

 

��
� �

� (�)

� ��, � (�), � ��(�)��
�≤ � ��, � (�), � ��(�)�� , �.�., � ∈ ℝ�

�(0) = 0 ⎭
⎬

⎫

 

Again a function � ∈ ��(ℝ�, ℝ)  is called an upper solution 

of the SNDE (2.1.2) on  ℝ�  if the function  � →
�(�)

���,�(�),���(�)��
  

is continuous and 

��
� �

�(�)

� ��, �(�), ���(�)��
�≥ � ��, �(�), ���(�)�� , �.�., � ∈ ℝ�

�(0) = 0 ⎭
⎬

⎫

 

Definition: A solution  ��   of the SNDE (1.1) is said to be 
maximal if for any other solution �  to SNDE (1.1) one has  
�(�) ≤ �� (�)  for all t∈ ℝ�. Again a solution ��   of the 
SNDE (1.1) is said to be minimal if  �� (�) ≤ �(�)  for all 
t∈ ℝ� where �  is any solution of the SNDE (1.1) on  ℝ�. 
 

Definition: (Caratheodory Case) 
 

We consider the following set of hypothesis: 
 

� 5) �is Caratheodory. 

� 6) The functions � ��, �(�), ���(�)�� and 

� ��, �(�), ���(�)��  are non-decreasing in  �  almost 

everywhere for  � ∈ ℝ�. 
� 7) The SNDE (1.1) has a lower solution �   and an upper 
solution  � on ℝ�  with  � ≤ �. 
� 8) The function  �: ℝ� → ℝ  defined by, 

�(�) = �� ��, � (�), � ��(�)���+ �� ��, �(�), ���(�)��� is 

Lebesgue measurable. 
 

Remark: Assume that (� 6 − � 8)   hold. Then 
 

�� ��, �(�), ���(�)���≤ �(�), �.�.� ∈ ℝ�, for all  � ∈ [� , �]. 
 

Theorem: Suppose that the assumptions (� 5)-(� 8) and  
(� 5 − � 8) holds and � is given in remark (4.1) further if 
��‖�‖ℒ� ≤ 1 then SNDE (1.1) has a minimal and maximal 
positive solution on  ℝ�. 
 

Proof: Now SNDE (1.1) is equivalent to IE (3.1)  ℝ� . Let  
� = �(ℝ�, ℝ) and define an order relation “≤” by the cone �   

given by (4.1). Clearly �   is a normal cone in  �. Define two 
operators  � and  �  on �  by (3.3) and (3.4) respectively. Then 
IE (3.1) is transformed into an operator equation ���� = � in 
a Banach algebra �. Notice that (� 5) implies �, � : [� , �] →
�   Since the cone  �  in  � is normal, [� , �]is a norm bounded 
set in �. Now it is shown, as in the proof of Theorem (3.1), 
that �  is a Lipschitz with a Lipschitz constant �   and �  is 
completely continuous operator on [� , �]. Again the 
hypothesis (� 6)  implies that  � and �  are non-decreasing on 
[� , �]. To see this, let  �, � ∈ [� , �]  be such that  � ≤ �.  
Then by  (� 6) 
 

��(�) = � ��, �(�), ���(�)�� ≤ � ��, �(�), ���(�)��

= ��(�), ∀� ∈ ℝ� 
Similarly,  

         �� (�) = ∫ (� − �)� ��, �(�), ���(�)�� ��
�

�
 

                    ≤ ∫ (� − �)� ��, �(�), ���(�)�� ��
�

�
≤

�� (�), ∀� ∈ ℝ� 
Implies that �  and  �   are non-decreasing operators on  
[� , �]. Again definition (2.5.2.1) and hypothesis  (� 7)  
implies that  
              

� (�) ≤

� ��, � (�), � ��(�)�� ∫ (� − �)� ��, � (�), � ��(�)�� ��
�

�
 

                       

≤ � ��, �(�), ���(�)�� ∫ (� − �)� ��, �(�), ���(�)�� ��
�

�
 

                       

≤ � ��, �(�), ���(�)�� ∫ (� − �)� ��, �(�), ���(�)�� ��
�

�
 

                       ≤ �(�), ∀� ∈ ℝ�and� ∈ [� , �] 
As a result  � (�) ≤ ��(�)�� (�) ≤ �(�), ∀� ∈ ℝ�  and  
� ∈ [� , �] 
Hence ���� ∈ [� , �], ∀� ∈ [� , �] 
Again � = ‖� ([� , �])‖ = ���{‖�� ‖: � ∈ [� , �]} 

                ≤ ��� �����∈ℝ�
∫ �(� − �)� ��, �(�), ���(�)�� ���

�

�
: � ∈

[� , �]� 
 

≤ ��� ������∈ℝ�
� �� ��, �(�), ���(�)�� ���

�

�

: � ∈ [� , �]� 

 

≤ � ∫ �(�)
�

�
�� ≤ �‖�‖ℒ�,Since  �� ≤ �� ‖�‖ℒ� ≤ 1 

We apply theorem (4.1) to the operator equation  ���� = �  
to yield that the SNDE (1.1) has minimum and maximum 
positive solution on ℝ�. 
This completes the proof. 
 

Example 
 

Example: Consider the following second order nonlinear 
differential equation of type (1.1) 
 

��
� �

�(�)

�����
�(�)

�� �(�)
��� ��

� =
�

��[���(��)]

�(0) = 0, ∀� ∈ ℝ�

�                                         (1)                  

Solution: Here,  

� ��, �(�), ���(�)�� =

�����
�(�)

�� �(�)
+ �� �� , � ��, �(�), ���(�)�� =

�

��[���(��)]
  

and � = �, � = 4� 
(ℋ �) The functions � = �, � = 4� are continuous on ℝ�  . 
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(ℋ �) Let, �� ��, �(�), ���(�)�� − � ��, �(�), ���(�)��� 

= ������ �
�(�)

1 − �(�)
+ �� ��� − ������

�(�)

1 − �(�)
+ �� ����

= ������
�(�)

1 − �(�)
−

�(�)

1 − �(�)
�� 

≤ |����| �
�(�)�(�) + �(�) − �(�) − �(�)�(�)

�(�)�(�) − �(�) − �(�) + 1
�

≤ |����||�(�) − �(�)| 
≤ �(�)|�(�) − �(�)| 
≤ � |�(�) − �(�)|, Since   � = ����  say which has bound  �  
bounded on ℝ� . 
 

(ℋ �) Take  ℎ(�) =
�

�� , it is continuous on ℝ� . 

∴ � ��, �(�), ���(�)�� ≤ ℎ(�), That is    
�

��[���(��)]
≤

�

�� 

(ℋ �)Now  �(�) = ∫ (� − �)ℎ(�)�� = ∫ (� − �)�� ��

�
�� =

�

�

�(� − �)
�� �

� �
�

�

�

− ∫ (−1)
�

�
�

�� �

� �
� �� 

                          =
�

� �
{(� − �)�� � − (� − 0)0� �} −

�

�
��

�� �

� �
�

�

�

�=

�

� �
(0) − �

�

� �
(�� � − 0� �)� 

                          =
�

��� → 0 �� � → ∞ 
 

It follows that all the conditions (ℋ �) − (ℋ �) satisfied. 
Thus by theorem (3.1) above problem has a locally attractive 
solution on ��.  
 

CONCLUSION 
 

In this paper we have studied the existence the lacally 
attractive solution and its extremal solution of second order 
nonlinear differential equation. The result has been obtained 
by using hybrid fixed point theorem for two operators in 
Banach space due to Dhage. The main result is well illustrated 
with the help of example. 
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