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INTRODUCTION 
 

Three processes are essential for exchange of gases 
between the air in alveoli and the blood in the 
pulmonary capillaries: ventilation (the filling of the alveoli 
with oxygen rich-air), perfusion (the flow of blood through 
capillaries) and diffusion (the passive movement of gases 
between alveoli and capillaries across the respiratory 
membrane due to concentration difference). The large surface 
area of the alveoli and the short diffusion pathway between the 
alveoli and the capillaries offer favourable conditions for the 
diffusion [1]. The oxygen diffused in the blood is carried in 
two ways. A large portion (98%) is carried in 
with hemoglobin inside red blood cells, and a small portion 
(2%) is carried in the dissolved state in plasma
 

Peter D. Wagner [2] developed a simple mathematical model 
of oxygen and carbon dioxide gas exchange across pulmonary 
membrane by considering these gases as inert gases. The 
model describes the time course of capillary partial pressure 
change along the capillary interms of lung
variables and gas-related transport variables. D. S. Karbing 
al. [3] developed a mathematical model of pulmonary gas 
exchange by considering physically dissolved form of oxygen 
in the blood and the slope of the tangent lines to the oxygen 
dissociation curve.  
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                             A B S T R A C T  
 

 

The main function of the human respiratory system is to take fresh
remove waste carbon dioxide from blood. There are millions of alveoli in the 
are enveloped by network of capillaries. Inhaled oxygen moves from the alveoli to the 
blood in the capillaries, and carbon dioxide moves from the blood in the capillaries to the 
air in the alveoli by diffusion across the respiratory membrane
partial pressure gradient of each gas. In this study, a mathematical model of pulmonary gas 
exchange was developed and numerical simulation was performed for cardiorespiratory 
parameters responses to breathing at rest in healthy human adult. The two forms of oxygen 
transport: combined with hemoglobin in red blood cell and in physically dissolved form in 
the blood were considered in the model. Factors that affect pulmonary gas exchange are 
shown by the model. 
 
 

 

Three processes are essential for exchange of gases 
and the blood in the 

: ventilation (the filling of the alveoli 
air), perfusion (the flow of blood through 

capillaries) and diffusion (the passive movement of gases 
between alveoli and capillaries across the respiratory 

. The large surface 
area of the alveoli and the short diffusion pathway between the 
alveoli and the capillaries offer favourable conditions for the 

The oxygen diffused in the blood is carried in 
A large portion (98%) is carried in combination 

with hemoglobin inside red blood cells, and a small portion 
(2%) is carried in the dissolved state in plasma. 

Peter D. Wagner [2] developed a simple mathematical model 
of oxygen and carbon dioxide gas exchange across pulmonary 

idering these gases as inert gases. The 
model describes the time course of capillary partial pressure 
change along the capillary interms of lung-related structural 

related transport variables. D. S. Karbing et 
ical model of pulmonary gas 

exchange by considering physically dissolved form of oxygen 
in the blood and the slope of the tangent lines to the oxygen 

They also developed a mathematical model by decomposing 
the total oxygen diffusion capacity of the pulmonary 
membrane into terms describing the diffusion capacity across 
the blood gas barrier and the diffusion capacity associated with 
oxygen binding to hemoglobin.
 

C. Brighenti et al. [4] presented a mathematical model of the 
oxygen alveolo–capillary exchange to provide the capillary 
oxygen partial pressure profile in normal and pathological 
conditions. They related the oxygen concentration and partial 
pressure by the well-known Hill equation. They described 
oxygen pressure versus capil
different values of diffusing capacity. G. C. E. Mbah 
formulated a mathematical model of gas exchange between the 
alveoli and blood capillary for normal human. They assumed 
the respiratory membrane is cylindrical in 
effects of surface area and thickness of pulmonary membrane 
and cardiac output on gas diffusion. 
 

S. Martin et al. [6] developed an integrated model 
transfer into the blood, coupled with a lumped mechanical 
model for the ventilation process. They investigated oxygen 
transfer into the blood at rest or exercise. 
mathematical model to determine factors (age, altitude, 
chronic obstructive pulmonary diseases)
pressures of oxygen and carbon dioxide in artery. A. Reynolds 
et al. [8] modeled gas exchange and the inflammatory response 
within a small portion of the lung in order to explore the lung 
during an inflammatory response.
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Mathematical model 
 

The following simplifying assumptions were made in this 
study: (1) The entire pulmonary bed is described as a single 
unit consisting of an alveolus and a capillary vessel assuming 
that all alveoli are uniform and have the same shape and the 
same properties for all capillaries   (2) the alveolar oxygen 
partial pressure is constant and uniform (3) blood flow rate is 
constant through all capillaries. The simplified model is shown 
in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Oxygen diffusion in the pulmonary membrane can be 
described by the Fick’s Law: 
 

))(()( tPPDtV AL                                                        (1) 
 

where )(tV  is the volume of oxygen  transferred across the 

pulmonary membrane per unit time, and DL is the diffusion 
capacity of the pulmonary membrane for oxygen, and PA and P 
are the partial pressures of oxygen (PO2) in the alveolus and in 
the capillary.  
 

If cV  is the total capillary blood volume, applying Fick’s 

principle for blood flow we get  
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where C is the concentration of the oxygen in the capillary 
blood. 
 

From Eq. (1) and Eq. (2), we have 
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The concentration C(t) of oxygen in the capillary blood is 
resulted from (i) the amount of oxygen dissolved in the blood 
plasma and (ii) chemical reaction which dissociate of oxygen 
from hemoglobin, both depend on the partial pressure P of 
oxygen in the capillary. Applying Henry’s Law for (ii) and 
relating partial pressure to the oxygen saturation of 
hemoglobin in the blood for (ii), we get the equation [3] 
 

SHbtPtC ..)()(                                                       (4) 
 

where  is the solubility of oxygen in the blood, Hb is the 
amount of haemoglobin per unit volume of the blood,  is the 

amount of oxygen contained in per unit  mass  of hemoglobin  
when 100% saturated and  S is oxygen saturation of 
haemoglobin in the blood. Eq.(4) yield s 
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J. Collins et al. [9] related the saturation and the partial 
pressure from a limited laboratory data as  
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The relation in Eq.(6)  is illustrated in Figure 2 which is 
obtained by MATLAB R2015a graphics. 
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where T is the time  taken by blood to pass through capillary at 
rest which is approximately  
 

0.75 sec for cardiac output of Q = 6mL/min. The mathematical 
model (Eq.(7)) is an initial value problem of ordinary 
differential equation with  P(0) = Pv, where Pv is the oxygen 
partial  pressure at the venous blood when blood enters the 
capillary. P(T)= Pa, where Pa is the oxygen partial  pressure at 
the arterial blood when blood exits the capillary (see Figure 1). 
 

Table 1 Values of the model parameters for healthy human 
adult at rest 

 

Parameter Unit values 
PA mmHg 100 
Pv mmHg 40 
DL mL.min-1 mmHg-1 40 
Q mL.min-1 6000 
T sec 0.75 
Vc mL 75 
 mL.mL-1.mmHg-1 0.0003 

Hb g.mL-1 0.15 
 mL.g-1 1.39 

 
Figure 1 Model showing alveolo–capillary gas exchange 
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Figure 2 Oxygen - hemoglobin dissociation curve 
 

From Eq.(3), Eq.(5) and Eq.(6), we get 
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When we substitute the parameters in the model, P = 100 is the 
equilibrium solution of the model. The direction field of the 
model can be plotted using the following Wolfram 
Mathematica 7.0 command follows. 
 

StreamPlot[{0.008889 ∗ (100 − �),0.00003 + (14636.7
∗ (�^2 + 50)/((�^3 + 150 ∗ � 

	                                +
23400)^2))}, {�, 0,10}, {�, 0,200}, PlotRange →
{{0,10}, {0,200}}]  
 

 
Figure 3 Sketch of direction fields of the model 

 

From the direction field of the model shown in the Figure 3, 
the equilibrium solution P = 100 is stable. This shows that the 
primary purpose of the respiratory system, the equilibration of 
the partial pressures of the respiratory gases in the alveolar air 
with those in the pulmonary capillary blood, is attained at a 
certain time. 
 

Simulation results 
 

The model is difficult to solve analytically. We used the 
Runge–Kutta algorithm (MATLAB R2015a function ode45) to 
obtain numerical solution for the differential equation with 

step size 001.0t . 

 

After substituting the parameters with 
appropriate units, we can solve Eq.(7) numerically and plot the 
result using the following MATLAB commands including 
ode45 for breathing at rest.

 

 

>> f=inline('(0.008889*(100-p))./(0.00003+(14636.7*(p.^2  
    +50)./((p.^3+150*p+23400).^2)))','t','p'); 
 >>[t, p]=ode45(f,[0:0.001:.75],40); 
>>plot(t, p) 
>>grid on 
>>axis([0 0.75 30 110]) 
>>xlabel('Time in capillary(sec)') 
>>ylabel('Oxygen partial pressure PO2 (mmHg)') 
 
The resulting graph is indicated in Figure 4. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

DISCUSSION 
 

From Eq.(3)-Eq. (6), we observed that oxygen diffusion into 
the capillary across the pulmonary membrane depends on the 
diffusion capacity of the membrane for the oxygen (DL), 
partial pressure difference between alveolar gas and capillary 
blood gas (PA-P), the solubility of the oxygen in the blood (), 
the capacity hemoglobin to carry of oxygen () and the amount 
of hemoglobin contained in the blood (Hb) .  The MATLAB 
implementation to solve the differential equation enabled us to 
make sure this fact.  Figure 3 shows that the partial pressure of 
oxygen in the capillary with respect time. The capillary blood 
reaches the alveoli level within about 0.25 seconds which 
agrees with [10]. The solution obtained for our model is 
similar to that the mathematical model developed by D. S. 
Karbing et al. [3].  
 

Since the blood arriving in the alveolar capillaries has a partial 
pressure of oxygen of, on average, 40 mmHg, while the 
pressure in the alveolar air is 100 mmHg, there will be a net 
diffusion of oxygen into the capillary blood. The diffusion 
of oxygen a will continue until equilibrium is reached. Our 
model described this real biological process. 
 

CONCLUSIONS 
 

Exchange of gases in the lungs takes place 
between alveolar air and blood flowing through 
lung capillaries by diffusion. After diffusing into the 
pulmonary membrane, oxygen is transported by the blood 
either combined with hemoglobin in the red blood cells or 
dissolved in the blood plasma. A mathematical model of gas 
exchange which incorporates the two cases was developed in 
this study.  In the model, previously developed relationship 
between oxygen saturation and partial pressure was used to 
describe be the partial pressure of oxygen in the capillary. 
Runge–Kutta algorithm (MATLAB function ode45) was used 
to obtain numerical solution for the model. The oxygen 
alveolo-capillary exchange was expressed numerically using 
the model.  
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