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INTRODUCTION 
 

A graph � = (�,�), where � is a finite set of elements, called 
vertices and � is a set of unordered pairs of distinct vertices of 
� called edges. The degree of a vertex � in �
edges incident on it. Every pair of its vertices are adjacent in 
is said to be complete, the complete graph on
denoted by ��. 
 

Let � and � be the vertices of a graph �,�	�
an alternating sequences � = ��,�,�,��,��
� of vertices and edges beginning with ver
with vertex � such that �� = ������ for all �
number of edges in a walk is called  its length. A walk in 
which all the vertices are distance in called a path. A path on
vertices is denoted by ��. A closed path is called a cycle, a 
cycle  on ′�′ vertices is denoted by ��. Let 
simple connected graph, for any vertex 
neighborhood is the set � (�) = {� ∈ �/
closed neighborhood of � is the set  � [�]= �
set � ⊂ �, the open neighborhood of � is � (
� and the closed neighborhood of � is � [�]=
 

Definition 1.1  
 

A set D V is a dominating set of G if every vertex v 
D is adjacent to at least one vertex of D. We call a 
dominating set D is a minimal if there is no dominating set    
D'  V (G) with D  D and D  D. Further we call a 
dominating set D is minimum if these is no dominating set 
D  V(G) with | D' |  | D|.  
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                             A B S T R A C T  
 

The domination parameters of a graph G of order n has been already introduced. It is 
defined as D⊆V(G) is a dominating set of G, if every vertex v
one vertex in D. In this paper, we have established various dominatio
Mongolian Tent , also we have  studied the relation between this parameters and illustrated 
with an examples. 
 
 
 
 
 
 
 
 
 
 
 

is a finite set of elements, called 
is a set of unordered pairs of distinct vertices of 

� is the number of 
edges incident on it. Every pair of its vertices are adjacent in � 
is said to be complete, the complete graph on′�′vertices is 

� − � walk of � is 
,… .����,��,�� =

of vertices and edges beginning with vertex � and ending 
= 1,2,… ..,�. The 

number of edges in a walk is called  its length. A walk in 
which all the vertices are distance in called a path. A path on′�′ 

is called a cycle, a 
Let � = (�,�) be a 

simple connected graph, for any vertex � ∈ �, the open 
/�� ∈ �} and the 

] � (�) ∪ {�}	. For a 
(�) = ⋃ � (�) ,� ∈

[ ]= � (�) ∪ �. 

V is a dominating set of G if every vertex v  V – 
D is adjacent to at least one vertex of D. We call a 
dominating set D is a minimal if there is no dominating set    

D. Further we call a 
dominating set D is minimum if these is no dominating set 

The cardinality of a minimum dominating set is called the 
domination number denoted by 
dominating set D of G is also called a  
 

Definition 1.2 
 

A dominating set D is said to be a total dominating set if 
every vertex in V is adjacent to some vertex in D. The total 
domination number of G denoted by 
cardinality of a total dominating set. 
 

Definition 1.3 
 

A dominating set D of a graph G is an independent 
dominating set, if the induced sub graph <D> has no edges. 
The independent domination number 
cardinality of a independent dominating set. 
 

Definition 1.4 
 

A dominating Set D is said to be connected dominating set, 
if the induced sub graph <D> is connected. The connected 
domination number c(G) is the minimum cardinality of a 
connected dominating set.  
 

Definition 1.5 
 

A dominating Set D of a graph G is said to be a paired 
dominating set if the induced sub graph <D> contains at 
least one perfect matching, paired domination number 
(G) is the minimum cardinality of a paired 
 

Definition 1.6 
 

A dominating Set D of G is a split dominating set if the 
induced subg raph    <V 
domination number s (G) is the minimum cardinality of a  
split  dominating set.  
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graph G of order n has been already introduced. It is 
V(G) is a dominating set of G, if every vertex v∈V-D is adjacent to atleast 

one vertex in D. In this paper, we have established various domination parameters of 
have  studied the relation between this parameters and illustrated 

The cardinality of a minimum dominating set is called the 
domination number denoted by (G) and the minimum 
dominating set D of G is also called a  - set.  

A dominating set D is said to be a total dominating set if 
every vertex in V is adjacent to some vertex in D. The total 
domination number of G denoted by t (G) is the minimum 
cardinality of a total dominating set.  

A dominating set D of a graph G is an independent 
dominating set, if the induced sub graph <D> has no edges. 
The independent domination number i (G) is the minimum 
cardinality of a independent dominating set.  

A dominating Set D is said to be connected dominating set, 
if the induced sub graph <D> is connected. The connected 

(G) is the minimum cardinality of a 

A dominating Set D of a graph G is said to be a paired 
dominating set if the induced sub graph <D> contains at 
least one perfect matching, paired domination number p 

(G) is the minimum cardinality of a paired dominating set. 

A dominating Set D of G is a split dominating set if the 
raph    <V – D> disconnected Split 

(G) is the minimum cardinality of a  
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Definition 1.7 
 

 A dominating Set D of G is a non split dominating set, if 
the induced sub graph  <V – D> is connected. Non split 
domination number ns (G) is the minimum cardinality of a 
non split dominating set.  
 

Definition 1.8 
 

A dominating set D of a graph G is called a global 

dominating set, if D is also a dominating set of G . The 

global domination number g (G) in the minimum 
cardinality of a global dominating set.  
 

Definition 1.9 
 

A dominating set D is called a perfect dominating set, if 
every vertex in V – D in adjacent to exactly one vertex in 
D. The perfect domination number pr(G) is the minimum 
cardinality of a perfect dominating set.  
 

� −Centipede graph is a tree on 2� vertices obtained by 
joining the bottom of � − copies of the path graph �� laid in a 
row with edges and is denoted by ℂ�. 
 

Definition 1.10 
 

The Harary graph Hn,k is a graph on the n vertices {v1, v2, . . . 
, vn} defined by the following construction: • If k is even, then 
each vertex vi is adjacent to vi±1, vi±2,. . . , vi± k 2 , where the 
indices are subjected to the wraparound convention that vi ≡ 
vi+n (e.g. vn+3 represents v3). • If k is odd and n is even, then 
Hn,k is Hn,k−1 with additional adjacencies between each vi and 
vi+ n 2 for each i. • If k and n are both odd, then Hn,k is Hn,k−1 

with additional adjacencies 
 

 { v 1, v1+ n−1 2 }, {v1, v1+ n+1 2 }, {v2, v2+ n+1 2 }, {v3, v3+ n+1 2 }, · · · 
, {v n−1 2 , vn} 
 

Definition 1.11 
 

Let  x  be any real value, then its upper sealing of x is 
denoted as  x   and is defined   
⌈�⌉	=  

     if    is an integer

 k,  where k is an integer lies in the interval   < k <  + 1 

x x

x x





 

the lower sealing of x is denoted as x and is defined by  
 ⌊�⌋	=  

     if   is  an in teger

 k ,  w here k is  an  integer lies  in  the interval     1  <  k  <  

x x

x x




 

 

 

Definition 1.12 
 

The ��� power of a graph � is a graph with the same set of 
vertices of � and an edge between two vertices if there is a 
path of length almost � between them.��  is called the square 
of �,�� is called the cube of � etc. 
 

Lemma 2.1  
 

Let G be a connected graph with (G)  2, them (G) + 
'(G) = n if and only if  
G = P4 or C4. 
 

Lemma 2.2 
 

Let G be a connected graph with  = 1 and  = n  then  
(G) + ' (G ) = n + 1 if and only if  G = k1, n. 
 

Lemma 2.3 
 

For any tree with n  2 with more then two pendent vertices 
then there exists a vertex                  v  V such that   (T – 
v) =  (T).  
 

Theorem 2.4  
 

� be a Mongolian tent with �	� + 1 vertices then 		�(�) ≤

(� − 1) �
�

�
� + 2. 

 

Proof: The Mongolian Tent with 2n+1 vertices is represented 
in figure 1.1 as follows 
 
 
 
 
 
 
 
 
 
 
 
 
 

The vertex set of � is denoted by � = ���,���/� = 1,2;		� =

1...�� 
 

Case (i)  � ≡ 0 (���	3 ) then 
 

� = ���;��,����/� = 1,2,..,�� is the minimum dominating set 

of � and its cardinality is 
 

|�| = �� 3� � + 1 

= �� 3� � + 1			������	� ≡ 0 (���3 ) ⇒ �� 3� � = �
�
3� �� 

 

Case (ii) � ≢ 0 (���	3 ) then 
 

� = ���;��,����;	��,�/� = 1,2,...�
�
3� ��	 is the  minimum 

dominating set with cardindity  is 
 

|�| = �
�

3
� + 2 = �� 3� �

+ 1				 ������	� ≢ 0 	(���3 ) 	 ⇒ �� 3� �

= �
�

3
� + 1� 

 

Therefore,   �(�) = �� 3� � + 1 
 

Mongolian tent with 3 � + 1 vertices then � is represented 
figure 1.2 follows 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 1.1 
 

 

 
 

Figure 1.2 
 



Domination Parameters of Mongolian Tent  

 

10723 

 

Now the vertex set of �	are denoted by = ���;��,�/� =

1,2,3 		���		� = 1,2,...�} 
 

Case (i)   

 � ≡ 0 (���4) then 

� = ���;��,����;��,����;���/� = 1,2,...�
�
4� �� is the required 

minimum dominating  set of �	 and its cardinality is   |�| =

2	 �
�

�
� + 2 

   = 2�
�

�
� + 2  

 �∵ � = 4�	 ⇒ �
�

�
� = �

�

�
��																																											 (i) 

 
Case (ii)   
� ≡ 1	(���	4)	 Then select the vertices of � as  

� = ���;��,����;��,����;/� = 1,2,...,�
�
4� �� is the required 

minimum dominating set of � 

Therefore, |�| = �
�

�
� + �

�

�
� + 1 + 1 

   

 �
�

�
� 2																																																																															 (ii) 

 
Case (iii)  
 

� ≡ 2(���4) then select the vertices of � as 

 � = ���;��,�;��,����;
��,����

�
= 1,2,… �

�

�
�� is the  

minimum dominating sets and its cardinality is    |�| = 
 

�� 4� � + �
�
4� � + 2 =

�� 4� � + �
�

�
� 2 �

�

�
�																																																																								 (iii) 

 
Case (iv)  
 
If � ≡ 3 	(���	4)    Collect the vertices of � as 

 � = ���;��,����;��,����/� = 1,2,...�
�
4� �� is the 

required minimum dominating set of � and its cardinality is      

|�| = 2�� 4� � + 1                                                              (iv)                                                                                                                               

Therefore,      �(�) =

⎩
⎪
⎨

⎪
⎧2�

�

�
� + 2															��	� ≡ 0 ,1(���	4)

2 �
�

�
� 												��	� ≡ 2(���4)

2	 �
�

�
� + 1									��	� ≡ 3 (���4)

� 

If G is a Mongolian Tent with 4n+1 vertices is given in figure 
1.3 as follows 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let the vertices set of �	are denoted by 

� = ���,���/� = 1,… ,4;	� = 1,2,= 1,2,… ,�� 
 

Case (i)  
 

 � ≡ 0 (���4) then 

� = ���;��,����;��,����;��,�;��,����/� = 1,… ,�
�
4� �� is the 

dominating set with minimum cardinality and  |�| = 2 �
�

�
� +

�
�

�
� + 2     = 3 �

�

�
� + 2 

= 3 �
�

�
� + 2					 �∵ � = 4� ⇒ �

�

�
� = �

�

�
��                              (i) 

 

Case (ii) 
 

� ≡ 1		(���	4)	then        � = ���;��,����;��,����;��,����;/

� = 1,2,… ,�
�

�
�� 

is the minimum dominating set of � and its cardinality is  

 |�| = 2 �
�

�
� + �

�

�
� + 1																																																																		 (ii) 

 

Case (iii) 
 
If � ≡ 2(���4) then      

� = ���;��,����;��,����;��,�;��,����/� = 1,...,�
�
4� �� 

Is the minimum dominating set and its cardinality is   

																					|�| = 2 �
�

�
� + �

�

�
� + 2         = 2�

�

�
� + 2 + �

�

�
� 

                                                              = 2�
�	

�
� + �

�

�
�       =

3 �
�

�
�																																																																																															 (iii) 

 
Case (iv) 
 
 � ≡ 3 (���	4) then 

� = ���;��,����;��,����;��,����/� = 1,2,… ,�
�

�
�� 

 
is the required minimum dominating set of  � and 

|�| = 3 �
�

4
� + 1 

Therefore, �(�) =

⎩
⎪⎪
⎨

⎪⎪
⎧3 	 �

�

�
� + 2																					��	� ≡ 0 (���4)

2 �
�

�
� + �

�

�
� + 1												��	� ≡ 1(���4)

3 �
�

�
� 																														��	� ≡ 2(���4)

3 �
�

�
� + 1																						��	� ≡ 3 (���4)

� 

III  If � is Mongolian tent with 5� + 1 vertices  
 

Case (i) 
 

 � ≡ 0 (���4)	 then     

� = ���;��,����;��,����;��,����;���;��,����/� = 1,… ,�
�
4� �� 

is the minimum dominating set and its cordiality is 

|�| = 4 �
�

4
� + 1 + 1

= 4 �
�

4
�

+ 2																								 �∵ � = 4� ⇒ �
�

4
� = �

�

4
�� 

Case (ii) 
 

If � ≡ 1(���4) then 

� = ���;��,����;��,����;��,����;��,����/� = 1,… ,�
�

4
�� 

is the required minimum dominating set of � and  

 

 
 

Figure 1.3 
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 |�| =

2 �
�

�
� + 2 �

�

�
� + 1																																																																										 (ii)	 

 
Case (iii) 
 
If	� ≡ 2	(���	4)	then 

� = ���;��,����;��,����;��,�;��,����;��,����/� = 1,2,… ,�
�

4
�� 

is the minimum dominating set and its cardinality is  

|�| = 2 �
�

�
� + 2 �

�

�
� + 2 = 2�

�

�
� + 2 �

�

�		
�	 = 4 �

�

�
�	 (iii) 

�∵ �
�

�
� = �

�

�
� + 1� 

 
Case (iv) 
 
If � = 3 (���4) then   

� = ���;��,����;��,����;��,����;��,����/� = 1,… ,�
�

�
�� 

if the minimum dominating  set of � and its cardinality is  

    |�| = 4 �
�

�
� +

1																																																																						……. (iv) 

Then,         �(�) =

⎩
⎪⎪
⎨

⎪⎪
⎧ 4 �

�

�
� + 2 ��	� ≡ 0 (���4)

2 �
�

�
� + 2 �

�

�
� + 1 ��� ≡ 1(���4)

4 �
�

�
� ��� ≡ 2(���4)

4 �
�

�
� + 1 ��� ≡ 3 (���4)

� 

 

(V) In   similar � having 6� + 1 vertices then its minimum 
demoniting sets and its cardinality is as follows. 

Let the vertices set of � are denoted by      � = ���;���/� =

1,2,3 ,… ,6;� = 1,2,… ,�} 
 

Cases (i) 
 

If � = 0 (���4) then 

� = ���;��,����;��,����;��,����;��,�;��,����;��,����/�

= 1,2,… ,�
�

4
�� 

is the minimum dominating set of � and its cardinality is    

                                 |�| = 5 �
�

�
� + 2												 = 5 �

�

�
� +

2																																																																																																								 (i) 
        

 ������	 �
�

�
� = �

�

�
� ��	� ≡ 0 (���4)� 

 

Case (ii)  
 

If          � ≡ 1(���4) then choose the elements of � as 

� = ���;��,����;��,����;��.����;��,����;��,����/� =

1,2,… ,�
�

�
�� is the minimum dominating set of � and its 

cardinality is    |�| = 3 �
�

�
� + 2 �

�

�
� + 1																																					 (ii) 

 

Case (iii) 
 

If            � ≡ 2(���4) choose 

� = 	 ���;	��,����;��,����;	��,�;	��,����;��,����;���;	��,����/�

= 1,2,… ,�
�

4
�� 

is the required dominating set of � and its cardinality is   

|�| = 3 �
�

�
� + 2 �

�

�
� + 3  

                  = 3 �
�

�
� + 3 + 2 �

�

�
�       = 3 �

�

�
� + 2 �

�

�
�      

�����	� ≡ 2	(���	4) �
�

�
� ≡ �

�

�
� + 1� 

    

 = 5 �
�

�
�																																																																									 (iii) 

 

Case (iv) 
 

If � ≡ 3 	(���	4) then 

		� = ���;��,����;��,����;��,����;��,����;��,����/� =

1,2,… ,�
�

�
�� 

is the required minimum dominating set of � and         |�| =

5 �
�

�
� + 1 

Therefore,         

�(�) =

⎩
⎪⎪
⎨

⎪⎪
⎧5 �

�

�
� + 2																				��	� ≡ 0 	(���4)

3 �
�

�
� + 2 �

�

�
� + 1					��	� ≡ 1	(���	4)

5 �
�

�
� 																										��	� ≡ 2	(���	4)

5 �
�

�
� + 1																		��	� ≡ 3 	(���	4)

� 

from the above we have 
 
 
 
 
 
 
 
 

Corollary 2.5 
 

 � be a Mongolian tent with �	� + 1 vertices then 

		�(�) ≤ (� − 1) �
�

�
� + 2. 

 

Lemma 2.6  
 

 Let � be a Mongolian tent with �� + 1 vertices then �(�) =

⎩
⎪⎪
⎨

⎪⎪
⎧ (� − 1) �

�

�
� + 2																														��	� ≡ 0 	(���4)

�
�

�
� �
�

�
� + �

���

�
� �
�

�
� + 1												��	� ≡ 1	(���	4)

(� − 1) �
�

�
� 																																						��	� ≡ 2	(���	4)

(� − 1) �
�

�
� + 1																															��	� ≡ 3 	(���	4)

� 
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