International Journal of Current Advanced Research

ISSN: O: 2319-6475, ISSN: P: 2319-6505, Impact Factor: SJIF: 5.995

Available Online at www.journalijcar.org

Volume 7; Issue 1(G); January 2018; Page No. 9206-9207 DOI: http://dx.doi.org/10.24327/ijcar.2018.9207.1511

Research Article

FIXED POINT THEOREM OF WEAK COMMUTING MAPPINGS

Damyanti Patel¹ and R.N.Patel²

¹Guru Ghasidas University Bilaspur (c.g.) ²Govt. M. L. S. College Seepat Bilaspur (c.g.)

ARTICLE INFO

Article History:

Received 19th October, 2017 Received in revised form 10th November, 2017 Accepted 26th December, 2017 Published online 28th January, 2018

Key words:

Complete metric space. Fixed Point, Continuous Mapping, Weak** commuting mapping.

ABSTRACT

In this paper we prove some fixed point theorem on weak** commuting mappings of Complete metric space.

Copyright©2018 **Damyanti Patel and R.N.Patel.** This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Das and Visanathan Naik [1], have proved a theorem for two commuting mappings. Later on Fisher [3] extended and proved a common fixed point of commuting mappings already Fisher [2] proved the following theorem for commuting mappings T and S.

Theorem [F1]

If S is a mapping and T is a continuous mapping of the complete metric space X into itself and satisfying the inequality:

$$D(STx, TSy) \leq c\{d(Tx, TSy) + d(Sy, STx)\}$$

for all x, y in X where $0 \le c \le \frac{1}{2}$, then S and T have unique common fixed point.

The purpose of this note is prove two results concerning fixed points of weak** commuting mappings defined on complete metric space and satisfying some new functional inequality.

Definition [1]: Two self mappings S and T of metric space (X,d) is called weak** commuted, if $S(X) \subset T(X)$ and for any $x \in X$,

$$d(S^2T^2x, T^2S^2x) \le d(S^2Tx, TS^2x) \le d(ST^2x, T^2Sx) \le d(STx, TSx) \le d(S^2x, T^2x).$$

*Corresponding author: Damyanti Patel Guru Ghasidas University Bilaspur (c.g.) **Definition [2]**: A map S: $X \to X$, X being metric space, is called an idempotent if $S^2 = S$.

Example [1]: Let X = [0,1] with the Euclidean metric space and define S and T by Sx = x/(x+3); Tx = 1/3 for all $x \in X$. Then $[0, 1/4] \subset [0, 1/3]$ where Sx = [0, 1/4] opr Tx = [0, 1/3]

$$d(S^2T^2x, T^2S^2x) = x/(2x+81) - x/(36x +81) = 32x^2/(4x+81)(36x+81)$$

$$\begin{array}{lll} \leq 8x^2/(4x+27)(12x+27) &= d(\ S^2Tx,\ TS^2x) \\ d(S^2Tx,\ TS^2x) &= 8x^2/(4x+27)(12x+27) &\leq \\ 8x^2/(x+27)(9x+27) &= x/(x+27) - x/(9x+27) &= d(ST^2x,\ T^2Sx) \\ d(ST^2x,\ T^2Sx) &= 8x^2/(x+27)(9x+27) &\leq \\ 2x^2/(x+9)(3x+9) &= x/(x+9) - x/(3x+9) &= d(STx,\ TSx) \\ d(STx,\ TSx) &= 2x^2/(x+9)(3x+9) &\leq 4x^2/9(4x+9) &= \\ x/9 - x/(4x+9) &= d(S^2x,\ T^2x) \end{array}$$

Using [0, 1] for $x \in X$ conclude that

 $\begin{array}{ll} d(S^2T^2x,T^2S^2x) \leq d(\ S^2Tx,TS^2x) \leq d(ST^2x,T^2Sx) & \leq d(STx,\\ TSx) \leq \ d(S^2x,T^2x) \ . \end{array}$

We have prove the following theorem

Theorem [1]: If S is a mapping and T is a continuous mapping of the complete metric space X into itself and satisfying the inequality

$$\begin{array}{ll} [1.1] & \{S,T\} \text{ is weak** commuting pair,} \\ [1.2] & d(S^2T^2x,T^2S^2y) \leq c \max\{d(T^2x,S^2y),d(T^2x,S^2T^2x),\\ \frac{1}{2}(d(T^2x,T^2S^2y)+d(S^2y,S^2T^2x),\\ D\left(S^2y,T^2S^2y\right)\} \end{array}$$

for all x, y in X, where $0 < c \le 1$, then S and T have unique common fixed point.

Proof: Let x be an arbitrary point in X. Define

$$(S^2T^2)^n x = x_{2n} \text{ or } T^2(S^2T^2)^n x = x_{2n+1}, \text{ where } n = 0,1,2,...$$

By contrastive condition [1.2],

$$\begin{array}{ll} d(x_{2n},\,x_{2n+1}) &= d(\,\,(S^2T^2)^nx,\,\,T^2(S^2T^2)^nx) \\ &= d(\,\,S^2T^2(S^2T^2)^{n-1}x,\,\,T^2S^2(T^2(S^2T^2)^{n-1}x)) \\ &\leq c\,\,\max\{d(T^2(S^2T^2)^{n-1}x,\,\,S^2(T^2(S^2T^2)^{n-1}x),\,\,d(T^2(S^2T^2)^{n-1}x,\,\,S^2(T^2(S^2T^2)^{n-1}x),\,\,d(T^2(S^2T^2)^{n-1}x,\,\,S^2(T^2(S^2T^2)^{n-1}x),\,\,d(T^2(S^2T^$$

inequality then we get $D\left(x_{2n},\,x_{2n+1}\right) \qquad \qquad \leq \qquad c \qquad d(x_{2n}, \qquad x_{2n+1}), \qquad \epsilon$

 $D(x_{2n}, x_{2n+1}) \leq C d(x_{2n}, x_{2n+1}),$ contradiction.

 $\begin{array}{lll} \text{Hence } d(x_{2n},\,x_{2n+1}) & \leq & & d(x_{2n-1},\,x_{2n}) \;, \\ \text{then we get} & d(x_{2n},\,x_{2n+1}) & & \leq & c \; d(x_{2n-1},\,x_{2n}) \end{array}$

Proceeding in the similar manner, $d(x_{2n}, x_{2n+1}) \leq$

Since c<1, it follows that the sequence $\{\ x_n\}$ is a Cauchy sequence in the complete metric space X and so it has a limit in X, that is $\lim_{n\to\infty}x_{2n}=u=\lim_{n\to\infty}x_{2n+1}$ and since T is continuous, we have $u=\lim_{n\to\infty}x_{2n+1}=\lim_{n\to\infty}T^2x_{2n}=T^2u$ Further, $d(S^2u,x_{2n+3})=d(S^2T^2u,T^2(S^2T^2)^{n+1}x,)=d(S^2T^2u,T^2S^2(T^2(S^2T^2)^nx))$ $\leq c\max\{d(T^2u,S^2(T^2(S^2T^2)^nx),d(T^2u,S^2(T^2(S^2T^2)^nx)+d(S^2(T^2(S^2T^2)^nx,S^2(T^2u))\},d(S^2(T^2(S^2T^2)^nx,T^2S^2(T^2(S^2T^2)^nx))\}$

$$= c \max \{d(T^2u, x_{2n+2}), d(T^2u, S^2 T^2u), \frac{1}{2} \{d(T^2u, x_{2n+3}) + d(x_{2n+2}, S^2 T^2u)\}, \\ d(x_{2n+2}, x_{2n+3})\} = c \max\{d(u, x_{2n+2}), d(u, S^2u), \frac{1}{2} \{d(u, x_{2n+3}) + d(x_{2n+2}, S^2u)\},$$

making $n \to \infty$, it follows that,

$$\begin{array}{ccc} & d(S^2u,u) & \leq & c \; d(u,\,S^2u) \\ \text{since } c & <1, \text{ which implies that } & d(S^2u,\,u) = 0 \\ \text{and so} & S^2u = u = \; T^2u \end{array}$$

Now weak** commutativity of pair {S, T} implies that

$$\begin{array}{lll} S^2T^2u = T^2S^2u; \ S^2Tu = TS^2u; \ ST^2u = T^2Su \\ \text{and so } S^2Tu = Tu \ \text{ and } & T^2Su = Su. \\ \text{Now } d(u,Su) = & d(S^2T^2u,T^2S^2(Su)) \\ \leq & c \ \text{max } \{d(T^2u,S^2(Su)),d(T^2u,S^2T^2u),\frac{1}{2}\{d(T^2u,T^2S^2(Su)) + d(S^2(Su),S^2T^2u)\},d(S^2(Su),T^2S^2(Su)) \\ & = & c \ d(Su,u) \end{array}$$

is a contradiction, as c < 1 and so u = Su.

Similarly we can show that u = Tu.

Hence u is common fixed point of S and T.

Now suppose that v is a second common fixed point of S and T. Then

$$\begin{array}{ll} d(u,\,v) &=& d(S^2T^2u,\,T^2S^2v) &\leq c\,\, max \{d(T^2u,\,S^2v),\,d(T^2u,\,S^2T^2u)\},\\ T^2u) & \text{if } \{d(T^2u,\,T^2\,S^2v) + a_4d(S^2v,\,S^2\,T^2u)\},\\ d(S^2v,\,T^2\,S^2v)\} & d(u,\,v) &= c\,\,d(u,\,v) \end{array}$$

and since c < 1, it follows that u = v.

Hence S and T have unique common fixed point. This complete the proof of the theorem.

Reference

- 1. Das K.M. and Viswanathan Naik, K: Common fixed point theorems for commuting maps on a metric space. *Proc. Amer. Math Soc.* 77(1979) 369.
- 2. Fisher, B: Common fixed point mapping. *Indian Jour.* Of Maths 20(1978) 2
- 3. Fisher, B: Common fixed point commuting mapping. Bull. Inst math Acad. Sinicea 7(1981) 397
- 4. Lohani P. C. and Badshah V.H.: Common fixed point and Weak** Commuting mappings; *Bull. Cal. Math. Soc.* 87(1995) 289-294.

How to cite this article:

 $d(x_{2n+2}, x_{2n+3})$

Damyanti Patel and R.N.Patel (2018) 'Fixed Point Theorem of Weak Commuting Mappings', *International Journal of Current Advanced Research*, 07(1), pp. 9206-9207. DOI: http://dx.doi.org/10.24327/ijcar.2018.9207.1511
