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INTRODUCTION 
 

Das and Visanathan Naik [1], have proved a theorem for two 
commuting mappings. Later on Fisher [3] extended and proved 
a common fixed point of commuting mappings already Fisher 
[2] proved the following theorem for commuting mappings T 
and S. 
 

Theorem [F1] 
 

 If S is a mapping and T is a continuous mapping of the 
complete metric space X into itself and satisfying the 
inequality: 
 

D (STx, TSy)        c{d(Tx, TSy) + d(Sy, STx)}
 

for all x, y in X where  0  c    ½, then  S and T have unique 
common fixed point. 
 

The purpose of this note is prove two results concerning fixed 
points of weak** commuting mappings defined on complete 
metric space and satisfying some new functional inequality.
 

Definition [1]: Two self mappings S and T of metric space 
(X,d) is called weak** commuted, if S(X)  
x  X, 
 

d(S2T2x,T2S2x)   d(S2Tx, TS2x)  d(ST2x, T
TSx)    d(S2x, T2x). 
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In this paper we prove some fixed point theorem on weak** commuting mappings
of Complete metric space. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

have proved a theorem for two 
commuting mappings. Later on Fisher [3] extended and proved 
a common fixed point of commuting mappings already Fisher 
[2] proved the following theorem for commuting mappings T 

If S is a mapping and T is a continuous mapping of the 
f and satisfying the 

c{d(Tx, TSy) + d(Sy, STx)} 

½, then  S and T have unique 

prove two results concerning fixed 
points of weak** commuting mappings defined on complete 
metric space and satisfying some new functional inequality. 

Two self mappings S and T of metric space 
 T(X) and for any  

x, T2Sx)     d(STx, 

Definition [2]: A map S: X 
called an idempotent if  S2  =  S.
 

Example [1] :  Let X = [0,1] with the Euclidean metric space 
and define S and T by  Sx  =  x/(x+3);     Tx  =  1/3 for all x 
X. Then [0, 1/4]   [0, 1/3] where       Sx = [0, 1/4] opr Tx = 
[0, 1/3] 
 

d(S2T2x, T2S2x)  = x/(2x+81) 
32x2/(4x+81)(36x+81) 
 

 8x2/(4x+27)(12x+27)    =  d( S
d(S2Tx, TS2x)  = 8x2/(4x+27)(12x+27)
8x2/(x+27)(9x+27)= x/(x+27) –
d(ST2x, T2Sx) = 8x2/(x+27)(9x+27)
2x2/(x+9)(3x+9) = x/(x+9) – x/(3x +9)   =  d(STx, TSx) 
d(STx, TSx) = 2x2/(x+9)(3x+9)
x/9 – x/(4x +9)   =  d(S2x, T2x) 
 

Using [0, 1] for x  X conclude that
 

d(S2T2x, T2S2x)  d( S2Tx, TS2x) 
TSx)   d(S2x, T2x) . 
 

We have prove the following theorem
 

Theorem [1]: If S is a mapping and T is a continuous mapping 
of the complete metric space X into itself
inequality  
 

[1.1]  {S, T} is weak** commuting pair,
[1.2]  d(S2T2x, T2S2y)     c max{d(T
½(d(T2x, T2S2y) + d(S2y, S2T2x),
D (S2y, T2S2y)}       
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COMMUTING MAPPINGS 

In this paper we prove some fixed point theorem on weak** commuting mappings 

 X, X being metric space, is 
=  S. 

:  Let X = [0,1] with the Euclidean metric space 
and define S and T by  Sx  =  x/(x+3);     Tx  =  1/3 for all x 

[0, 1/3] where       Sx = [0, 1/4] opr Tx = 

= x/(2x+81) – x/(36x +81) =  

/(4x+27)(12x+27)    =  d( S2Tx, TS2x)  
/(4x+27)(12x+27)  

– x/(9x +27)   =  d(ST2x, T2Sx)  
/(x+27)(9x+27)   

x/(3x +9)   =  d(STx, TSx)  
/(x+9)(3x+9)  4x2/9(4x+9) = 

x)  

X conclude that 

x)  d(ST2x, T2Sx)  d(STx, 

We have prove the following theorem 

[1]: If S is a mapping and T is a continuous mapping 
of the complete metric space X into itself and satisfying the 

S, T} is weak** commuting pair, 
c max{d(T2x, S2y), d(T2x, S2T2x), 
x), 
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for all x, y in X, where  0 < c    1 , then  S and T have unique 
common fixed point. 
 

Proof : Let x be an arbitrary point in X. Define 
 

 (S2T2)nx  =  x2n or T2(S2T2)nx  =  x2n+1 , where n = 0,1,2, …  
 

By contrastive condition [1.2], 
 

d(x2n, x2n+1)   =  d( (S2T2)nx, T2(S2T2)nx) 
=  d( S2T2(S2T2)n-1x, T2S2(T2(S2T2)n-1x)) 
  c max{d(T2(S2T2)n-1x, S2(T2(S2T2)n-1x), d(T2(S2T2)n-1x, S2 
T2(S2T2)n-1x),   ½ {d(T2(S2T2)n-1x, T2 S2(T2(S2T2)n-1x)  + 
d(S2(T2(S2T2)n-1x, S2 T2(S2T2)n-1x)},    d(S2(T2(S2T2)n-1x, T2 
S2(T2(S2T2)n-1x)}=  c max{d(x2n-1, x2n), d(x2n-1, x2n) , ½ {d(x2n-1, 
x2n+1) + d(x2n, x2n)}, d(x2n, x2n+1)} 
If     d(x2n, x2n+1)  > d(x2n-1, x2n) in the above 
inequality then we get  
D (x2n, x2n+1)   c d(x2n, x2n+1), a 
contradiction. 
Hence d(x2n, x2n+1)   d(x2n-1, x2n) ,  
then we get           d(x2n, x2n+1)   c d(x2n-1, x2n) 
 

Proceeding in the similar manner,  d(x2n, x2n+1)  
 

 r2n-1 d(x0, x1)  
so,  d(xn, xm)    k=n

md(xk,xk-1) for   m  >  n 
 

Since   c  <  1, it follows that the sequence { xn} is a Cauchy 
sequence in the complete metric space X and so it has a limit 
in X, that  is  limn x2n  =  u  =  limn x2n+1 
and since T is continuous, we have  u  =  limn x2n+1  =  
limn T2x2n  = T2u  
Further,  d(S2u, x2n+3) =      d(S2T2u, T2(S2T2)n+1x, ) 
    =   d( S2T2u, 
T2S2(T2(S2T2)nx)) 
 c max{d(T2u, S2(T2(S2T2)nx), 
d(T2u, S2 T2u),  
½ {d(T2u, T2 S2(T2(S2T2)nx) + d(S2(T2(S2T2)nx, S2 T2u)},  
 d(S2(T2(S2T2)nx, T2 S2(T2(S2T2)nx)} 
        
 =   c max {d(T2u, x2n+2), d(T2u, S2 T2u), ½ {d(T2u, x2n+3) + 
d(x2n+2, S

2 T2u)}, 
d(x2n+2, x2n+3)} 
   =    c max{d(u, x2n+2), d(u, S2u), ½ 
{d(u, x2n+3) + d(x2n+2, S

2u)},  
         d(x2n+2, x2n+3) } 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

making n , it follows that, 
  d(S2u,u)    c d(u, S2u)  
since c   <  1, which implies that  d(S2u, u)  =  0  
and so  S2u  =  u  =   T2u  
 

Now weak** commutativity of pair {S, T} implies that  
 

S2T2u = T2S2u; S2Tu = TS2u; ST2u = T2Su 
and so S2Tu  =  Tu  and   T2Su  =  Su.      
Now d(u, Su)  = d(S2T2u, T2S2(Su)) 
   c max {d(T2u, S2(Su)), d(T2u, S2 T2u), ½ {d(T2u, T2 S2(Su)) 
+ d(S2(Su), S2 T2u)},d(S2(Su), T2 S2(Su)) 
  = c d(Su, u) 
is a contradiction, as c  < 1and  so u  =  Su. 
 Similarly we can show that u = Tu.  
Hence u is common fixed point of S and T. 
Now suppose that v is a second common fixed point of S and 
T. Then  
 

d(u, v)  =   d(S2T2u, T2S2v)    c max{d(T2u, S2v), d(T2u, S2 
T2u) 
½ {d(T2u, T2 S2v)+ a4d(S2v, S2 T2u)},  
          d(S2v, T2 S2v)} 
   d(u, v) = c d(u, v) 
 

and since c  < 1, it follows that  u  =  v.  
 

Hence S and T have unique common fixed point.  
This complete the proof of the theorem. 
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