
 

 

FINSLER HYPERSURFACE

Natesh N and Narasimhamurthy 

Department of Mathematics, Kuvempu 
 

A R T I C L E  I N F O                              

INTRODUCTION 
 

Finsler geometry is a kind of differential geometry and 
byoriginated P. Finsler (1894-1970) in 1918.It is usually 
considered as a generalization of the Riemannian
fact, B.Riemann, inhis lecture in 1854, already suggested a 
possibility of studyingmore general geometry th
geometry, but he said thegeometrical meaning of quantities 
appearing in such a generalized space will not be clear and it 
can not produce any contribution tothe geometry.Consquently 
all people had neglected for about 60 yearsto study such 
ageometry. 
 

Differential geometry of the total space of a manifold's tangent 
bundle has its roots in various problems like Differential 
Equations, Calculus of Variations, Mechanics, Theoretical 
Physics and Biology. Nowadays, it is a distinct domain of 
differential geometry and has important applications in the 
theory of physical fields and special problems from 
Mathematical Biology. This significance, has led to the 
creation of new concepts and geometric structures, which are 
specific to TM, such as systems of Second Order Differential 
Equations (SODE), metric structures, semi sprays and 
nonlinear connections. Actually, investigating these concepts 
can be regarded as a powerful device for the study of the 
geometric properties of the tangent bundle. 
 

The theory of a subspace of a Fisler space has been introduced 
by H.Rund [2]. As an m- dimensional subspace  
space F� represented parametrically by the set of equation 
x� = x�(uα).  
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In this paper we investigate Torse – forming infinitesimal transformation of Cartan's 
curvature on FinslerianHypersurface. Further, we obtain
flat space under a Torse - forming infinitesimal transformation..
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nonlinear connections. Actually, investigating these concepts 
can be regarded as a powerful device for the study of the 

theory of a subspace of a Fisler space has been introduced 
dimensional subspace  F� of Finsler 

represented parametrically by the set of equation 

The authors G.M. Brown, Moor, C.Shibata, M.Matsumoto 
B.Y. C hen, C.S. Bagewadi, L.M.Abatangelo, Dragomir and 
S.Hojo have studied different properties of subspaces of 
Finsler, Kahler and Riemannian spaces. The authors 
S.K.Narasimhamurthy  and C.S.Bagewadi  have studied and 
published C- Conformal special Finsler spaces admitting a 
parallel vector field “and “Infinitesimal C 
motions of special Finsler spaces etc..
 

Torse-forming infinitesimal transformation 

V⁄�
� = v�μ

�
+ αδ�

� and torse – forming curvature inheritance in 

a Finsler space have been studied by Mishra and Lodhi.
 

Let us consider an n-dimensional an affinely connected Finsler 

space F�  with symmetric conn

covariant derivative of T�
�(x, ẋ)

of Cartan’s is given by 
 

T�/�
� = ∂�T�

� − ∂�̇T�
�G�

� + T�
�Γ��

 

T�/�
� = ∂�T�

� + T�
�G��

� − T�
�Γ��

∗� −̇
   

T�/�
� = ∂�T�

� + T�
�V��

� − T�
�V��

�                 
 

In (1.2) /j denote the h-covariant differentiation and in (3) 
denote the v- covariant differentiation.
 

Cartan’s connection coefficient 

relations 
 

∂�̇Γ��
∗�	ẋ� = 0                                                                          

∂�̇Γ��
∗�	ẋ� = ∂̇�Γ��

∗�                                                                     
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dimensional an affinely connected Finsler 

with symmetric connection parameter	Γ��
∗� (x, ẋ).The 

̇ ) with respect to xk in the sense 

��
∗� − T�

� Γ��
∗�                           (1) 

− T�
�G��

�                                     (2)  

                                                     (3) 

covariant differentiation and in (3) /j 
covariant differentiation. 

icient Γ��
∗� (x, ẋ) satisfy the following 

                                                                   (4) 

                                                   (5)  
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These notations involving commutation formula of Cartan’s 
covariant derivative 
 

2T�/[��]
� = − ∂̇�T�

�K��
� + T�

�K���
� − T�

�K���
�                               (6) 

Where,  

K���
� (x, ẋ) = 2{∂[�Γ�]�

∗� + ∂̇�Γ�[�
∗� G�]�

� + Γ�[�
∗�Γ�]�

∗� }                       (7) 
 

The commutation formula for a tensor T�
� we show the role of 

curvature tensor and torsion tensor as follows 
 

T�/�/�
� − T�/�/�

� = T�
�R���

� − T�/�
� R��

�                                           (8) 

Where R���
�  is called Cartan third curvature tensor. 

 

T�/�/�
� − T�/�/�

� = 	T�
�S���

� − T�
� S���

�                                             (9)  
                                                                                  

Where S���
� 	 is called Cartan first curvature tensor. 

 

Hypersurface  ���� of the Finsler SPACE 	�� 
 

Finsler hyper surface F��� = (M���, L(u, v))	 of a Finsler 
space  	F� = M�, L(x, y))	(n ≥ 4) may parametrically 
represented by the equation x� = x�(uα) , (α = 1,2, …n − 1) , 
where uα) an the Gaussian coordinates of  F���. It will be 
assumed throughout the paper that the functions  x� are at least 
of class C� and the matrix of the projection parameters  

Bα
� =

���

��α  has rank m. 
 

The fundamental metric tensor gαβ and Cartan’s C- tensor Cαβγ 

of  F��� are given by 
 

1. gαβ(u, v) = g��(x, ẋ)Bα
� Bβ

�
 

2. Cαβγ = C���Bα
� Bβ

�
Bγ
� 

 

The following notations  will be used here 
 

Bα
� =

∂x�

∂uα
	, Bαβ

� = 	
∂�x�

∂uα ∂uβ
	 , Bαβ

�
= 	 vαBαβ

� 	, Bαβγ…
���…

= 	Bα
� 	, Bβ

�
	, Bγ

� 

1. gαβ = g��B��
αβ

 

2. B�
α = gαβ	g��Bβ

�
 

3. Cα = Bα
� C�	,							C

α = B�
αC� 

4. Cβγ
α = B�

αC��
� Bβγ

��
 

5. hβ
αβ
= gαβ − lαlβ		and							hαβ = h��Bαβ

��
 

6. lα = Bα
� l� 

 

Finsler Hypersurface Admitting Torse-Forming Vector Field 
 

Let  	F� be an Fnisler space with a fundamental function 
L(x, y) 
 

Where y = ẋ	 and equipped with the Cartan connection 

CΓ = �F��
� , N�

� , C��
� �. 

 

Definition: A vector field V�	in	F
� is called torse-forming if it 

satisfies the condition 
 
 

V/�
� = V�

� + αδ�
�                                                                       (10)  

  

Where α is a non zero scalar function and  j being any non null 
vector field. The scalar function  appearing in (10) is a point 
function and satisfy following 
 

1. ∂̇�(α) = 0 

2. α/� = α�                                                                    (11) 
 

Definition: We consider an infinitesimal transformation of the 
form 
 

x�� = x� + v�(x)dt,                                                                 (12) 
 

V⁄�
� = v�μ� + αδ�

�                                                                   (13)  
 

Such a transformation is called a torse- forming infinitesimal 
transformation. 
 

Let F��� be an hypersurface of a Finsler space F�  and define a 
vector field Xα = X�B�

α    in F���. 
 

Transvecting equation (3.1) by B�
αBβ

�
 

 

B�
αBβ

�
V/�
� = B�

αBβ
�
V�
� + B�

αBβ
�
αδ�

�		V/β
α = Vβ

α + αδβ
α                    (14) 

 

Differentiating (3.1) covariantly with respect to γ we get 
 

V/β/γ

α = Vγβ
α + Vβ/γ

α + αγδβ
α                                                      (15)   

                                                                 

Or    
 V/�/�

� = (V�
� + αδ�

�)� + V�/�
� + α/�δ�

�                                (16)  
 

V/�/�
� = V					��

� + α�δ�
� + V					�/�

� + α/��δ�
�                            (17)  

 

Interchanging γ	and	β	in equation (3.6) we get 
 

V/�/�
� = V				��

� + α�δ�
� + V				�/�

� + α/�δ�
�                               (18)  

 

Subtracting (3.6) and (3.7) we get 
 

V/�/�
� − V/�/�

� = α(		�		���				�	�δ�
�) + V

					(	�/�	–�/�
� )		 +α/�δ�

� − α/�δ�																										
� (19) 

 

Using equation (3.2) (b) and in (3.8) we get 
 

V/β/γ

α − V/γ/β

α = α(		β		δγ
α				�	γδβ

α) + V
					(	β/γ	–γ/β
α )		 +		αγδβ

α − αβδγ
α                        (20)  

 

We obtain to the commutation formula (1.6) 
 

V/�/�
� − V/�/�

� = 	∂�̇	γV
�K��

�
+ V�	V���

� 	                              (21)  
 

In view of (3.9) and (3.10) we get 
 

α(		�		���				�	�δ�
�) + V

					(	�/�	–�/�
� )		+α�δ�

� − α�δ�
� = −∂�̇	γV

�K��
�

+ V�	K���
�          (22)  

 

Or  
 

V�K���
� = ∂�̇V

�	K��
�
+ α(		�		���				�	�δ�

�) + V
					(	�/�	–�/�
� )		+		α�δ�

� − α�δ�
�	     (23) 

 

Or   
 

V�K���
� = ∂�̇V

�	K��
�

+ αA + β�V
� + C                               (24)  

 

Where  a)    A = (		�		���				�	�δ�
�) 

 

1. β� =   β/� − γ/� 

2. 		α�δ�
� − α�δ�

� 
 

Thus we have 
 

Theorem 1: In Finsler Hypersurface F��� the torse-forming 
transformation generates non- flat space. 
 

In view of (3.13)(b) if βγ is symmetric, then we have 
 

β� = β/� − γ/�= 0                                                              (25) 
 

Introducing (3.14) in (3.12) we get 
 

V�K���
� = ∂�̇V

�	K��
�

+ α(		�		���				�	�δ�
�) + 		α�δ�

� − α�δ�
�	  (26) 

 

Contracting (3.15) with respect to the indices α	and	γ we get 
 

VηKηβ = ∂ρ̇V
α	Kβγ

ρ
+α�nβ�β� + αβ − nαβ 
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β = 	
��������̇�

�	���
�

�(���)��

(���)�
	                                               (27) 

 

Hence we state 
 

Theorem 2: In a Finsler hypersurface F��� equipped with 
torse –forming transformation in view of Cartan curvature 
tensor Kδβγ

α  this is non null vector field β is given by (3.16) if 

βγ	is symmetry 
 

Torse-forming curvature ����
� 	��	����. 

 

Introducing equation (3.4) in (1.8) we get 
 

V/�/�
� − V/�/�

� = V/�
� 	R��

� − V�R���
�                                      (28) 

 

Using equation (3.9) in (4.1) we get 
 

α(		�		���				�	�δ�
�) + V

					(	�/�	–�/�
� )	+		α�δ�

� − α�δ�
� = V/�

� R��
� − V�R���

� 											(29) 
 

In view of (3.4) and (4.2) we get 
 

α(		�		���				�	�δ�
�) + V

					(
�

�
–
�

�

� )		+		α�δ�
� − α�δ�

� = (V						�
� + α	δ�

�)R��
� − V�R���

� 																			(30) 

 

α(		β		δγ
α				�	γδβ

α) + V
					(	β/γ	–γ/β
α )		 +		αγδβ

α − αβδγ
α = (V						δ

α + Rδ
α)	Rγβ

δ − VδRδγβ
α                    (31) 

 

VδRδγβ
α =	V					δ

α 	R				γβ
δ + αRγβ

α + αγδβ
α − αβδγ

α + Vγ/β
α − Vβ/γ

α + αβδγ
α − αγδβ

α      (32) 
 

Hence we state 
 

Theorem 3: In a Finsler hypersurface  F��� equipped with 
torse-forming transformation (2.4) the torse-forming vector v� 
satisfies the relation (30) 
 

Contracting the (4.5) equation with respect to the indices 
α	and	β we get 
 

VδRδγα
α =	V					δ

α 	R				γα
δ + αRγα

α + αγδα
α − ααδγ

α + Vγ/α
α − Vα/γ

α + ααδγ
α − αγδα

α						(33) 
 

Or  VδRδγα
α = 	δ�VαRγα

δ � + αRγα
α + α�nγ�γ� + Vγ/α

α − Vα/γ
α + αγδαγ                 (34)     

 

Or  

VδRδγα
α = 	δ�VαRγα

δ � + αRγα
α + α(n − 1)γ + Vγ/α

α − Vα/γ
α + (n − 1)αγ            (35) 

 

V�
�

� − V�
�

� + V�
�R��

� + α(n − 1)� + αR��
� − (n − 1)α� − V�R�� = 0           (36) 

 

Thus we state 
 

Theorem 4: In Finsler hypersurface F��� equipped with torse-
forming transformation (3.4) the non null vector field 
β	satisfies differential equation (4.9). 
 

Introducing (3.4) in commutation formula (1.9) we get 
 

V/�/�
� − V/�/�

� = 	V�S���
�                                                        (37) 

 

Or  

V/�/�
� − V/�/�

� = 	−V�S���
�                                                    (38) 

 

Using equation (3.8) in (4.11) 
 

α(		�		���				�	�δ�
�) + V

					(	�/�	–�/�
� )		+		α�δ�

� − α�δ�
� = −V�S���

� 								 (39) 
 

V�S���
� = α(		�		��

�				�	�δ�
�) + V

					(	�/�	–�/�
� )		+		α�δ�

� − α�δ�
�											 (40) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hence we state 
 

Theorem 5: In Finsler hypersurface F��� the cartan first 
curvature tensor Sδγβ

α  with torse-forming transformation (3.4) 

generates non flat space. Contracting α	and	β	in equation 
(4.13) we get 
 

V�S���
� = α(		�		���				�	�δ�

�) + V
					(	�/�	–�/�
� )		+		α�δ�

� − α�δ�
� (41) 

Or  
 

V�S���
� +α�δ���� + V�/�

� − V�/�
� + α� − nα�                       (42) 

 

V�S�� +	(n − 1)α� − V�/�
� − V�/�

� − α�n� − γ� = 0         (43) 
 

VδSδγ − Vγ/α
α + Vα/γ

α − α(n − 1)γ + (n − 1)αγ = 0              (44) 
 

Hence we state 
 

Theorem 6: In Finsler hypersurface F��� equipped with torse-
forming transformation (3.4) the non null vector field 	β 
satisfies the relation (4.17). 
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