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INTRODUCTION 
 

Convection in porous medium usually known as the Horton
Rogers-Lapwood problem has been the focus of interest of 
many researchers over the past several decades.  The study
initiated by Horton and Rogers [1] and Lapwood [2] is a 
porous medium version of Rayleigh-Bénard problem in a clear 
fluid layer and has wide variety of practical applications.  
These include oil reservoir modeling, geothermal engineering, 
building thermal insulation, grain storage and nuclear waste 
repository and so on. A comprehensive study on the 
convection in porous media is well documented in the books 
Ingham and Pop [3], Nield and Bejan [4] and Vafai [5]. Most 
of the studies in literature concerning Horton
problem assume that there is no temperature difference 
between the fluid and solid phases, at any location of the 
porous medium system. This is called as local thermal 
equilibrium (LTE) model.  In many practical situations LTE 
model fails to comprehend the heat transport in porous 
medium.  Hence it is important to assume that the solid and 
fluid phases are not in local thermal equilibrium by 
considering two-field model of the energy equation and this 
model is popularly non as the local thermal non
(LTNE) model in the literature.  Heat pipes, cooling of 
computer chips, food processing, microwave heating are few 
applications where LTNE effects are predominant. 
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An eigen boundary value problem is solved for the critical eigenvalue in the case of a 
Rayleigh-Bénard-Brinkman convection problem bounded by permeable wal
boundary condition on temperature and general boundary condition on velocity. Unknown 
initial values and guess eigenvalue required to initiate the successive linearization method 
are obtained using the single-term Rayleigh-Ritz method. 
equilibrium between the solid and fluid phases in the Newtonian fluid
medium results in coupled partial differential equations. It is shown that five steps of the 
method results in a convergent solution with an accuracy of 

 
 
 
 
 
 
 
 

Convection in porous medium usually known as the Horton-
Lapwood problem has been the focus of interest of 

many researchers over the past several decades.  The study 
initiated by Horton and Rogers [1] and Lapwood [2] is a 

Bénard problem in a clear 
fluid layer and has wide variety of practical applications.  
These include oil reservoir modeling, geothermal engineering, 

insulation, grain storage and nuclear waste 
repository and so on. A comprehensive study on the 
convection in porous media is well documented in the books 
Ingham and Pop [3], Nield and Bejan [4] and Vafai [5]. Most 

orton-Rogers-Lapwood 
problem assume that there is no temperature difference 
between the fluid and solid phases, at any location of the 
porous medium system. This is called as local thermal 
equilibrium (LTE) model.  In many practical situations LTE 

ils to comprehend the heat transport in porous 
medium.  Hence it is important to assume that the solid and 
fluid phases are not in local thermal equilibrium by 

field model of the energy equation and this 
thermal non-equilibrium 

(LTNE) model in the literature.  Heat pipes, cooling of 
computer chips, food processing, microwave heating are few 
applications where LTNE effects are predominant.  

Vowing to these applications there have been number of works 
in literature concerning the LTNE model. Banu and Rees [6] 
were the first amongst others to study the onset of Darcy
Bénard convection using a LTNE model and obtained the 
critical Rayleigh number as a function of local thermal non
equilibrium parameters.  Postelnicu and Rees [7] extended the 
work of Banu and Rees [6] to Darcy
convection by considering a form
non-equilibrium with stress-free boundaries. It was shown that 
the inclusion of quadratic drag term in the mom
has no effect on stability criteria since the basic state being 
motionless. Further, they recovered LTE results by performing 
asymptotic analysis for large inter
coefficient H. Malashetty, et. al. 
Lapwood-Brinkman convection using a LTNE model and 
reiterated the results obtained by Postelnicu and Rees [7]. 
Nouri-Borujerdi et. al. [9] studied the effect local thermal non
equilibrium on conduction in a fluid saturated porous c
with a uniform heat source and obtained conditions under 
which the LTNE can be assumed.  Postelnicu [10] extended 
the earlier work by Postelnicu and Rees [7] to rigid boundaries 
and gave a quantitative comparison between the results of 
stress-free and rigid boundaries. Above
Newtonian liquid as a working medium.  In recent past non
Newtonian fluids are being used in place of their Newtonian 
counterparts as most of the industrially important fluids exhibit 
non-Newtonian characteristics. With this view point 
researchers have extended the use of LTNE effects in non
Newtonian fluid saturated porous medium.  For example, 
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An eigen boundary value problem is solved for the critical eigenvalue in the case of a 
Brinkman convection problem bounded by permeable walls with Robin 

boundary condition on temperature and general boundary condition on velocity. Unknown 
initial values and guess eigenvalue required to initiate the successive linearization method 

Ritz method. The local thermal non-
equilibrium between the solid and fluid phases in the Newtonian fluid-saturated porous 
medium results in coupled partial differential equations. It is shown that five steps of the 
method results in a convergent solution with an accuracy of 6 decimal digits. 

Vowing to these applications there have been number of works 
literature concerning the LTNE model. Banu and Rees [6] 

were the first amongst others to study the onset of Darcy-
Bénard convection using a LTNE model and obtained the 
critical Rayleigh number as a function of local thermal non-

stelnicu and Rees [7] extended the 
work of Banu and Rees [6] to Darcy-Brinkman-Bénard 
convection by considering a form-drag term, using a thermal 

free boundaries. It was shown that 
the inclusion of quadratic drag term in the momentum equation 
has no effect on stability criteria since the basic state being 
motionless. Further, they recovered LTE results by performing 
asymptotic analysis for large inter-phase heat transfer 

et. al. [8] studied the onset of 
Brinkman convection using a LTNE model and 

reiterated the results obtained by Postelnicu and Rees [7]. 
[9] studied the effect local thermal non-

equilibrium on conduction in a fluid saturated porous channel 
with a uniform heat source and obtained conditions under 
which the LTNE can be assumed.  Postelnicu [10] extended 
the earlier work by Postelnicu and Rees [7] to rigid boundaries 
and gave a quantitative comparison between the results of 

nd rigid boundaries. Above-cited works concern 
Newtonian liquid as a working medium.  In recent past non-
Newtonian fluids are being used in place of their Newtonian 
counterparts as most of the industrially important fluids exhibit 

tics. With this view point 
researchers have extended the use of LTNE effects in non-
Newtonian fluid saturated porous medium.  For example, 
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Shivakumara et. al. [11] studied the onset of convection in a 
viscoelastic fluid-saturated sparsely packed porous layer using 
a thermal non-equilibrium model.  They showed that 
viscoelastic effects enhance stabilizing effect of the interphase 
heat transfer coefficient. Recently, Malashetty et. al. [12] 
studied the effect of thermal non-equilibrium on the onset of 
convection in a couple stress fluid saturated porous layer and 
showed that interphase heat transfer coefficient increases the 
critical Rayleigh number for the onset of convection with the 
increasing values of couple stress parameter. In literature there 
are works addressing the LTNE on the double diffusive 
convection in a fluid saturated porous layer.  Double diffusive 
convection in a porous layer using a thermal non-equilibrium 
model was studied by Malashetty et. al. [13] and they showed 
that interphase heat transfer coefficient has a significant say on 
the stationary, oscillatory and finite amplitude double diffusive 
convection in a fluid saturated porous medium.  Malashetty 
and Heera [14] and Malashetty et. al. [15] performed linear 
and non-linear stability analyses of the double diffusive 
convection in a rotating porous layer (tightly/sparsely packed) 
using a thermal non-equilibrium model.  In these studies it was 
shown that the rotation increases the stabilizing effect of 
interphase heat transfer coefficient in all the three modes of 
double diffusive convection, namely, stationary, oscillatory 
and finite amplitude.  Works of Malashetty et. al. [16] and 
Shivakumara et. al. [17] takes into account of thermal non-
equilibrium effects on convective instability in an anisotropic 
porous layer. In all the studies mentioned so far concerning 
LTNE either stress-free boundaries with isothermal conditions 
are made use.  But, the interface conditions (slip conditions) 
and the thermal boundary conditions of the third type are the 
most general and practical boundary conditions.  To the best of 
authors knowledge there are no works concerning Rayleigh-
Bénard-Brinkman convection with LTNE and general 
boundary condition.  Hence, we propose to investigate the 
same in the present paper.  
 

Mathematical Formulation  
 

We consider a layer of fluid saturated porous medium of depth 
d which is heated from below and cooled from above, as 
depicted in Figure 1. The upper surface is held at a temperature 

0T  while the lower one is at 0  T T . It is assumed that both 

form-drag and boundary effects are significant, that the porous 
medium is isotropic but that local thermal equilibrium does not 
apply. Thus the governing equations, i.e., the continuity, 
momentum and energy equations, subject to the Boussinesq 
approximation, take the form 
 

0,  

q                                          (1) 
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t
   


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


 (3) 

       21 1  

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

s
s s S fs

T
c k T h T T

t
, (4) 

where,  ,

q u v  is the velocity vector, t is time,   is the 

density,   is the porosity of the porous, medium, p is the 

pressure, e  is the effective viscosity, K is the permeability of 

the porous medium,   is the coefficient of thermal expansion, 

g is acceleration due to gravity, c is specific heat at constant 
pressure, T  is the temperature, k is the thermal conductivity, h  
is the inter-phase heat transfer coefficient. Further, the 
properties of fluid phase are indicated with the subscript f and 
those of solid phase are denoted by the subscript s.  

 
Fig 1 Schematic diagram of the physical configuration 

 

The following velocity boundary conditions at the permeable 
walls are made use (see, Siddheshwar [18]):  
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 (5) 

  

Here, 1  and 2  are dimensionless quantities depending on 

the material parameters which characterizes the structure of the 
permeable boundary membranes.  We define the following 
dimensionless variables 
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 (6) 

Using (6) in equations (1) - (4) and dropping asterisks for 
simplicity, we obtain 
 

0,  
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q  (7) 

21 ˆ
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M H
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. (10) 

 

The non-dimensional numbers appearing in equations (7) - 
(10) are: 
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
 e
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K
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d
 the Darcy number, 
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 the Prandtl number, 
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 the Darcy-Rayleigh number, 
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the inter-phase heat transfer parameter, 
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f
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 the porosity-scaled conductivity ratio and 

( )

( )





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f s
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M

c k
 the diffusivity ratio. 

 

The usual Rayleigh number, which is based on the mean 
properties of the porous medium, is given by   

*

1




Ra R . 

 

We now introduce the steam function  , x y  that takes care 

of continuity equation (7) as follows 
 

,      .
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u v
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We substitute equation (11) into equations (8) - (10) and 
eliminating pressure from the momentum equation we get the 
following equations: 
 

 
 
 

2

2 4
,

Pr ,

    
    

   


 

Da
Da

t x y
  

2 
  


 Ra

x
, (12) 

 
 

 2
,

,

  
   

 
H

t x y
, (13) 

 2 


  


M H
t

. (14) 

 

The basic state is assumed to be quiescent and the heat 
transport takes place through conduction alone and hence we 
have 
 

0,      1 ,      1       b b by y . (15) 
 

We now superimpose a small perturbation on the basic state as 
follows 
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Substituting equation (16) in equations (12) - (14) and 
linearizing we obtain 
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
. (19) 

It can be easily proved that equations (17) - (19) obey the 
principal of exchange of stabilities and hence the time 
derivative terms in those equations can be neglected to get 
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The boundary conditions for the perturbed variables are 
assumed in the following form 
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Here, 1LDs d K is the slip Darcy number at the lower 

surface, 2UDs d K is the slip Darcy number at the upper 

surface, ,L UBi Bi  are the Biot numbers of the fluid phase at 

lower and upper surfaces respectively, * *,L UBi Bi are the Biot 

numbers of the solid phase at lower and upper surfaces 
respectively.  Equations (20) – (22) admit solutions in the form 
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where k is the horizontal wave number.  By substituting 
equation (25) into equations (20) - (24) the following set of 
equations is obtained: 
 

   2 2 2 21 0      
 
Da D k D k Rak , (26) 
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   2 2 0      D k H , (28) 

20,      0,      0L LD Ds D D Bi           
*and     0 at     0LD Bi y    , (29) 

20,      0,      0        U UD Ds D D Bi   
*and     0 at     1   UD Bi y . (30) 

 

Equations (26) - (30) are solved using successive linearization 
method by treating Ra as an extra variable. The details of the 
method are discussed in the paper by Narayana et al. [19] and 
Ashoka [20]. The initial solutions for the successive 
linearization method were obtained through single-term 
Galerkin method in the following form: 



Advance Successive Linearization Method to Find Critical Eigenvalue in the Rayleigh-Bénard-Brinkman Convection Problem 
with Stress-Free Boundaries with Isothermal Conditions  

 

 7388

 

 

 

 

4 3 2
1 2 3

2
4 5

2
6 7

2 ,      

,

,

y y a y a y a y

y y a y a

y y a y a







   


   


   

 (31) 
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It should be noted here that  , 0L UDs Ds  represents stress-

free boundaries and  ,L UDs Ds   represents rigid 

boundaries.  Similarly, the case  , 0L UBi Bi   represents 

adiabatic type temperature boundary condition while 

 ,L UBi Bi   represents isothermal type boundary 

condition.  Other combinations of boundary conditions are 
obtained for some particular choice of values of these 
parameters.   
 

RESULTS AND DISCUSSION 
 

A semi-analytical study is made of the linear stability analysis 

for the Rayleigh-Bénard-Brinkman convective instability 

problem that assumes local thermal non-equilibrium between 

the fluid and solid phases and that considers general boundary 

conditions on velocity and temperatures.  The governing 

equations result in a two-point eigen boundary value problem 

with third type boundary conditions. It is the boundary 

conditions that pose obstacles in obtaining an analytical 

expression for the eigen value Rac (critical Rayleigh number).  

The most general formulation of the problem facilitates the 

handling of 12 limiting case problems which at the present 

time are being tackled as 12-independent problems.  The 

integrated approach to the convective instability problem gives 

a new direction to the investigation of such problems.  The 

main difficulty in solving such ebvp's with generalized 

boundary conditions concerns convergence of the schemes, 

iterative or otherwise. 
 

The elegance in the SLM method can be appreciated only 
when it is implemented in an automated way in the chosen 
computer program. Since MATLAB implements algorithms 
mostly through matrices, the SLM based procedure that leans 
heavily on matrix based concepts is ideally suited for 
Chebyshev-based spectral SLM method.  SciLab is another 
such package (open source) that provides natural support for 
implementation of SLM procedure. 

 

 
 

Fig 2 Critical Rayleigh number as a function of fluid and solid phase Biot 
numbers for different  boundary combinations 

 

We now move on to discuss some of the important results 
obtained through the computation.  It is observed that the 
critical eigen value of permeable surface lies in between those 
of the free-free and rigid-rigid boundaries, i.e., 
 

 (Rac)Free ≤ (Rac)Permeable ≤ (Rac)Rigid. 
 

These results are in line with those reported by Siddheshwar 
[18].  Also, the critical Raleigh number corresponding to the 
Robin type temperature boundary conditions lies in between 
those of isothermal and adiabatic type of temperature boundary 
conditions, i.e., 
 

 (Rac)Adiabatic ≤ (Rac)Robin ≤(Rac)Isothermal. 
 

Figure 2 affirms the above statement for both free-free and 
rigid-rigid boundaries. As mentioned earlier, the case 

 , 0L UBi Bi   represents adiabatic type temperature 

boundary condition, while  ,L UBi Bi   represents 

isothermal type boundary condition and the intermediate 

values of  ,L UBi Bi represent Robin type boundary condition.  

It is evident from Figure 2 that for intermediate values of 

 ,L UBi Bi the critical Rayleigh number is sandwiched between 

those of adiabatic and isothermal cases. 
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Fig 3 Critical Rayleigh number as a function of fluid and solid phase Biot 

numbers for different Darcy number Da 
 

 

 
 

Fig 4 Critical Rayleigh number as a function of fluid and solid phase Biot 
numbers for different  H  number  

 

 

 
Fig 5 Critical Rayleigh number as a function of fluid and solid phase Biot 

numbers for different H number  
 

In the present problem, the non-boundary parameters that 
affect the critical Rayleigh number are the Darcy number Da, 
the inter-phase heat transfer parameter H and the porosity-
scaled conductivity ratio γ.  We now discuss effects of these 
parameters on the onset of convection with upper and lower 
stress-free-isothermal (FIFI) boundaries.  Fig 4 clearly shown  
that increasing values of LogH results in increasing the critical 
Rayleigh number indicating that the inter-phase heat transfer 
parameter has a stabilizing effect on the onset of convection in 
the case of stress-free-isothermal (FIFI) boundaries.  It is 
observed Fig 5 that the critical Rayleigh number is a 
decreasing function of the parameter γ which mean that 
convection sets in much earlier than expected for higher values 
γ vowing to its destabilizing effect in both FIFI cases.  Further, 
the Darcy number Fig 3 also increases the critical Rayleigh 
number in FIFI case.  Hence it has a stabilizing effect on the 
system considered. Results of the stress-free-isothermal 
boundary conditions is a special cases of the general boundary 
conditions considered in the paper.  We omit the discussion of 
the same for reasons of space. 
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