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INTRODUCTION

The study of HIV dynamics is one of the most important developments in recent AIDS research for understanding the
pathogenesis of HIV infection. The HIV infection that leads to AIDS as become a important disease in the world. In the study of
HIV infection and its progression, the antigenic diversity of the antigen namely the HIV plays an important role. The intensity of
sexual contact is an important factor that adds to the antigenic diversity since more number of new antigens are acquired by the
individual who is getting infected. The process of divergence of the antigenic properties of the invading antigens requires a
constant monitoring so that the preventive strategies to arrest the growth of antigenic diversity can be adopted. The intercontact
times do play a crucial role in the increase of antigenic diversity. If the antigenic diversity crosses a particular level which is
known as antigenic diversity threshold, then there is a collapse of the immune system and seroconversion immediately takes place.
The antigenic diversity threshold model has been discussed by Nowak and May (1991), Stiliankis et al. (1994), and Kirschner et
al. (2000).

In the estimation of expected time to seroconversion there is an important role for interarrival times between successive contacts;
and it has a significant influence. In the case of persons exposed to HIV infection through sexual contacts, the contribution to the
antigenic diversity would depend upon the number of contacts in the interval (0, t]. If the number of contacts is increasing then
interarrival times between contacts would decrease. If any person has contact with an unknown partner, there is a likelihood to
have the fear of getting infected. However the person does not avoid the contacts. But there is a possibility that a person may
postpone the event namely the contact due to the fear complex. This gives rise to the sequence of random variables in increasing
order. Therefore it is considered here that the interarrival times between contacts may form a geometric process. For detailed
study of geometric process and its property one can refer to Lam Yah (1988). A stochastic model for the estimation of statistical
measures for time to seroconversion of HIV infected using geometric process has been derived under different threshold
distribution (Gamma, Mixed Exponential distribution, Exponential -Geometric Distribution) by Kannan et al. (2008), Kannan et
al. (2012), Kannan et al. (2017). In this paper, we propose a stochastic model to determine the expected time to seroconversion
and its variance are discussed under the assumption that interarrival times between contacts are distributed as a geometric process
using Generalized Rayleigh distribution as a threshold. In developing such a stochastic model and cumulative damage process
discussed by Esary et al. (1973) is used. In this study the theoretical results are substantiated using numerical data simulated.
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Assumptions of the model
The following are the assumptions underlying in the model developed here

e  The transmission of HIV is only through sexual contacts.

e An uninfected individual has sexual contacts with HIV infected partner, and a random number of HIV are getting
transmitted, at each contact.

e An individual is exposed to a damage process acting on the immune system and the damage is assumed to be linear and
cumulative.

e The interarrival times between successive contacts are random variables which forms a geometric process.

e The sequence of successive contacts and threshold level are independent.

e From the collection of large number of interarrival times between successive contacts of a person, a random sample of
‘k’ observations are taken.

Notations

The notations used in this model are as follows

X i " arandom variable denoting the amount of damage arising due to I & contact X l.s are identically and independently distributed with p.d.f.
g () and c.d.f. G() .
Y * arandom variable representing the antigenic diversity threshold which follows Generalized Rayleigh distribution with parameter ! 2] " and

'"A' thep.df h () and c.d.f. H() .

U. " acontinuous random variable denoting the inter-arrival times between successive contacts with p.d.f. f () and c.d.f. F' () .

k
& () . the p.d.f. of the random variable z Xl.

i=1

F;{ () : the 'k h convolution of /' () .

T a continuous random variable denoting the time to seroconversion with p.d.f. / () and c.df. L () .
Vk (l ) : probability of exactly 'k contacts in (0, t ] .
* :
/ (S) the Laplace Stieltjes transform of / (Z) .
* :
f (S) the Laplace Stieltjes transform of f (l) .
RESULTS

It can be shown that

k o0
P ZXi <Y |= ng(x)ﬁ(x) dx
i=1 0
Let Y ~ Generalized Rayleigh Distribution (Ol AL U )

ﬁ(x) =1- [1 — e Hn) J _ e—/l(x—,u)2

Hence

k o0

PIYX <Y|= A(M)Z} ' k
S ¥ [ s

The survival function S(t) is
S(t) =P[T > 1t]

k
V()P Y X, <Y
1

o)
k=0 i=
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= Z Pr{there are exactly k contactsin (0,t]}
k=0

* Pr{the cumulative total of antigenic diversity < Y}
Lt)=1-S()

L) =[1=8 (A2 =240) }21“1 (1) [ & (A+an ~220)

On simplification

I'(s)= [1 ~ g (A+ A =224) }i[f (s)]k [g* (A4 ap - uy)]
k=1
Taking Laplace Stieltjes transform of 1(t),we get

k-1

F(s)=[1-g"(A+ s’ ~220) Jifk (s) [ & (A+an ~220) ]

£
Since 715~ Geometric process fk (S) can be written as,

RO-T17( ) B

Substituting equation (3) in (2), we get

S
an—l

o)< (w22 e o 220] 1 (2

E(T)= - d:;s y

- _[1—g* (A+a —z/w)]g[g* (A+20 —2/1/1)} . (%ljf* (af_l D g “
Consider

%(ﬁf*(ail D 5=0

~tlror 2@

=f" (0){(213%} (5

Substituting equation (5) in (4), we get

E(T)=—-[1-g (A+ 1 ~224) ]g (¢ (a+a —200)] 17 (o){(aiﬁ]

. k-1
[1-g" (a+ a4 ~241) | } alg (2+ " -24u)

=- a0 S0 _[g*(m;uf —2@)]“

k=1

a
... (6)

Consider
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k-1

A+ Au’ =2u)

i a[ g*(i+i,u2 —2/1,u)T_1 - g*(

k=1 a

a a

[l—g*(/1+/1,u2—2/1y)] [a—g*(/1+/1y2—2/1,u)]

a(a—1)

[l—g*(/IJr/I,uz —2/1;1)] [a—g*(m/w —uﬂ)]

Substituting equations (7) in (6), we get

1-g" (A+ a8 =24p) | a(a-1
E(T)=—[ — ]f (0)[ * ; L) 2
l-g (ﬂ,+ﬂ,,u —2ﬂ,y)] [a—g (ﬂ,+ﬂ,,u —2ﬂ,y)]
Let f(.) ~ Exponential distribution with parameter c then
* *l 1 *il 2
re)=——  s0)=-- [0)=%
C+s C and C
* o * o * (24
N=—2 g 2(u)=—2— ¢ (a?)=—2—
g( ) a+/1’g ( ,u) a+2ﬂ,,u’g ( ,u) a+ A’

From equation (8)

{1_{;1 +Zl+_?)yz } a+0;/1,UH(—1j

C

a(a—l)
a a a a a a
1- + = a— + =
a+A a+Alys a+2iu a+A a+iluys a+2iu

a(a+/1)(a+2/1y)(a+/1y2)

ad’ —a’ +ac’ Ay’ +2aa’ Au+aa’i—-4a’ Au

c +2aaA’ 1 +aad’ it +2aal’ u+al’ i’
=201’ —2aA* u+2aA’ 1

. o+ ot A 207 Ap+ ol
A+l 20 207 10

aa’ —a’ +ad’ Ap’ +2adt Au+aa’d—4a’ Au
2

c +2aaA’ 1 +aaA’ 1’ +2aal’ u+al’u
=20 1 =204 u+2al’ i

On simplification

g(r)= L0

s=0

E(Tz)z[l—g*(ﬂ+ﬂﬂ2—21ﬂ)}i g*(’H’wz_z’w)kl(?_; (ﬁf*(af'l D

k=1

(10)

Consider
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d? (& ..
F(gf (a“

)

s=0

() )
- Oy U O e o £
=e[j”ez"(0)[f*'(0)] Je by b ol [

Iifszrlli):[f*”(o)—[f*'(o)]2}

From equation (10)

B(T?)=[1-g (A + 4’ —24) [V(U))Y g*(/1+/1u2—2ﬁ,,u)k1[ : a1 }

On simplification

and [E(U,)] " =] /7 (0)]

fog Wﬂz—Mﬂ)J[E(U»Tig*(mw-zw)"lhffl‘_oz(fz(ti)}

.. (1)
We note
1 1
V(Ul)—c2 and [E ]22—2
=g (A ~22u)] 22 i 22
E(T)= - V(U,) - - — -
(a —1) [l—g (/1+/1,u —2/1;1)] [a -g (/1+/1,u —2/1;1)]
_ 2
[I*g*(l”ﬂzfﬂﬂﬂ[E(U 7 [1=g (A+ 4 ~20u)
(a—l)2 ' B 2a’ N a’
[afg*(lﬁLZ,uszZ,u)J [azfg*(/1+/1y272/1yﬂ
1 2
|:1_[ai2y+a+ojlyz_a+0;ﬂ,,uj} a2 [1_[0!?14—0(:1#2_aj;i,u)}[a_[aii*—aj;,yz_aj;l,u)}
(a1 [7) N !
{az_[aiﬂ+a+ojly2_a+0;/1y]}
----- (12)
Let
e, a a
4 a+d a+A a+2u i
. @) ;
p a’ (azﬂ.,uz 207 A+’ A+ 2A° 1 +2i3,u3)
b 2( , 1)(053 s +2azﬂy+azi+2a12,u3]
cla —
+0M,2,uz +2a/12,u+2/13,u3 On simplification ----(13)
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1 B 1

A, =
a a a 2 a a a
1- + > a” — + >
(a+/1 o+ Au a+2/”t,uj (a+/1 a+Au a+2/1,uj

&+ 200 Au+ A+ 207 1+ oA @ik + 2047 u+ 2070108
QM =200 A+ o’ A+ 27 1 200108
4, = &+ A 20 Ap+ A+ 207 1+ A’ ik + 2047 u+ 207 1

'’ +atad’ Ay’ +2a°a’ Au+ 2%’ +ata’ A

va’ad’ w422’ u 27 A1 — o —4a’ Au 20’ i1 =204 u+ ol i
On simplification - (14)

a a a
1- + 5=
{ (a+/1 a+Au a+2/1,uj}(32}

A = —
3 (a—1)2 2
) a’ (acz/l,u2 207 Au+a’ A+ 2% 18 +2/13,u3)
e (a—l)z(oz3 oAl 200 A+t A+ 2047 1 + ad’ it +2aﬂ,2,u+2ﬂ,3,u3)
On simplification - (15)
1 3 2
a a a a a a
1- + 5= a— + S =
y (a+i a+Au a+2ﬂ,yj (a+/1 a+Au a+2/1yJ
e 1
J’_
) a a a
a’— + -
(aJrﬂ, a+Au a+2l,u}
@’ + P 20 A+ P A+ 204 18 + ad it + 207 u+ 2% 0
QM =20 A+ P A+ 2071+ 20° 18
4= 2

Cad’+ ac’ A’ +2aa’ Au+aa’ A+ 2aal’ i’
vaol’ )’ +2aal’ u+2al’ 1’ —a’ — 4P Ap - 2007 1P - 2007 u + ad i
& A 20 A+ oA+ 2007 1 + oA i+ 200 1+ 22 10

&+ 20 A+ 0P A+ 204 18 + ad it + 207 u+ 2% 10
a’a’ +aladt At +2a%at Au+2a% a1t + atat A

+a’ad’ i +2a% ol u+ 227 1 — o’ —4at Au - 2007 1 =200’ u+ ad’ i’
On simplification - (16)

Substituting equations (13),(14),(15) and (16) in (12), we get

E(T%)= 4.4, + A4,

The Variance of time to seroconversion is

v[r]=£[r*]-[£(r)]
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a(azﬂyz —20°Ap+ AP A 200 1 + 2/13y3)
[aof +ad’ i +2ac’ Au+act A+ 2aaA’ i1 +acd? 1f +2a0A’ 1 J
+2a’ 1 — o —4a’ A —20A 11 — 2007 pu+ oA i
—((ch/l,u2 =207 A+ P A2 1+ 2/13;13)
292 [aoz3 +ad’ A’ +2ac’ Au+act A+ 2aal’ 1 +acd’ i1t +2a0A’ 1 J
+2a’ 18 — o — 4P Au—2007 1" =204’ p+ oA’ il
ol (azof +al@’ Al + 227 Au+ 22 ol il + AP A+ atad i + 287’ J
+22° 18 — o — 4o’ Au 207 1 — 20X’ u+ o’ it
ac’ +ac’ i’ +2ac’ Au+aal A+2aad’ 1 +acd’ 1t +2a0’ 1
( +2aA’ 1P — o —4aP A =200 18 — 2007 i+ aA’ i J

a’a’ +ata Ayl + 227t Au+ 2ol i1l +at P A+ alad i+ 28l i
-a[ +22° 1 — o —4aP Au—207 1 —Za/iz,u+a/12u2j
[aoc3 +ad’ i’ +2a0’ Apu+ac’ A+2aaA’ 1 +acd’ 1 +2a0A’ 1 J
+2a° 18— — 4ot Au—2007 1’ =204’ p+ oA’ il
o (azof ralat 123t Au 22’ al i +ataP A+ alad i + 28l i ]
+22° 1 — o — 4’ Au—20A’ 1 2007 pu+aA’ it
aa’ +ac’ ul +2a0’ Au+ac’ A+2a0d’ 1t +aaA’ i1t +2a0A’ u
[ +2al’ 1 — o — 4P A 20010 —2aﬂzy+alz,u2J
(&M =207 Au+ @ A+ 22 177 + 221
o =200 A+ A+ 20711 + 22401
a’e’ +ald Ayl 1237’ Au+2a’a )l At A+ atad )t + 28 el u
( +22° %1 — o 4’ Au 204’ i1 =200 u+a Zuzj

virl= c (az—l)(a-l)2
a’a’ +a’ad i + 227’ Au+ 227’ i) vl A+ atad ) +2a%al’ u
[ +22° %10 - — 4P Au—2007 11 —2a22ﬂ+alz,uzJ
ac’ +ac’ At +2a0’ Au+acl A+2aal’ i1 +acd’ 1f +2a0A’ 1
( +2a’ 1 — o —4a’ Au-2007 i1 —2a/12y+a/12y2]

Numerical Illustrations

Table 1 16 4
u=05a=02,1=03 1
a _ 12
c=0.5 & w0
Mean Variance =
2 1.222222 13.87125 2 3
3 0.725275 10.96233 E 6 Mean
4 0.523810 9.96901 4 Variance
5 0.411985 9.472471
6 0.340206 9.175408 2 -
7 0.290019 8.977927 0 T
8 0.252874 8.837204 2 3 4 5 6 7 8 9 1011
9 0.224236 8.731867 a
10 0.201465 8.650068 Figure -1
11 0.182918 8.584713
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Table 2 16 -
a:0.2,120.3,a:2 14 A
H c=0.5 - 2 K
Mean Variance ; 10
0.5 1.222222 13.87125 & 8
1 1.159420 11.44935 g & Mean
1.5 1.125731 10.32889 = .
2 L111111 9.876543 47 Variance
2.5 1.104587 9.680903 2 A
3 1.101614 9.59298 0
345 }.(1)8(9)5352? g'gigggg 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
4.5 1.099779 9.539093
5 1.099951 9.544117 " Figure - 2
Table 3 "
#=05a=02,a=2 o |
A CcC= 05 - 10 A
=
Mean Variance s g
0.5 1.181818 12.25987 £
1 1.125000 10.3058 e ¢ Mean
1.5 1.095238 9.40697 =4 Vari
2 1.076923 8.891519 5 | ariance
2.5 1.064516 8.557573
3 1.055556 8.323711 0
35 1.048780 8.150841 0.10.20.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
4 1.043478 8.017872
45 1.039216 7.912428 A Figure - 3
5 1.035714 7.826767
Table 4 20 -
u=05c=0541=0.3 ig ]
a a=2 g 4
Mean Variance ; ig
0.1 1.166667 11.70556 ~ i
= 8 Mean
0.2 1.222222 13.87125 g 6 -
0.3 1.250000 15.10417 4 - Variance
0.4 1.266667 15.89859 2
0.5 1.277778 16.45275 0
gg i%gigé‘; }g?g}ég 0.1 0.20.3 04 0.5 06 0.7 08 0.9 1.0
0.8 1.296296 17.42293 o X
0.9 1.300000 17.62429 Figure - 4
1 1.303030 17.79091
Table -5
=02,A=03,a=2 |
a=0.,A=0.5,a= 350 -
c =05 300 -
#=" £ 20 |
Mean Variance >
1 0.6111 3.4678 2 200 1
2 0.3056 0.8670 E« 150 A Mean
3 0.2037 0.3853 100 Variance
4 0.1528 0.2167 50
5 0.1222 0.1387 0
6 0.1019 0.0963
7 0.0873 0.0708 0.10.20.30.40.50.60.70.809 1.0
8 0.0764 0.0542 .
9 0.0679 0.0428 ¢ Figure - 5
10 0.0611 0.0347
CONCLUSIONS

It can be seen from Table-1 that as '@’ increases the mean time to seroconversion decreases. This is due to the fact that in a
geometric process if @ > 1 then the sequence of random variables would be decreasing and so the inter arrival times form a

decreasing sequence. Hence E (T ) decreases by the fact that the contacts would be more frequent. Similarly the variance
of the seroconversion time also decreases. It is easily seen from Table (1) and Fig.(1).
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If @ which is parameter of threshold which follows Generalized Rayleigh distribution, increases then the expected time to

seroconversion decreases. This due to the fact that £ (T ) decreases if g increases. Hence the average threshold level is

less and hence it takes less time to cross the same. Hence the variance of seroconversion also decreases as indicated in Table-
2 and Fig.2.

The behavior of E (T ) for fixed k,a,c and g but with variation in A . An increase in A which is the parameter of

mixed exponential of threshold increases then the expected time to seroconversion and its variance decrease as indicated in
Table-3 and Fig.3.

The value of £ (T ) corresponding to the variation in & with k, i,c and A are fixed. @ happens to be the parameter of

the random variable depicting the amount of antigenic diversity contribution in successive contacts. If « increases both
expected time to seroconversion and its variance also increase as indicated in Table-4 and Fig.4.

If 'c' the parameter of the distribution of the random variable, U ; denoting the inter contact time is increasing then expected

1
time to seroconversion decreases. It is due to fact that since U, follows Exp (C) andso F (U l.) =— Hence if C increases,

then the inter-arrival time on the average decreases. Then there would be more number of contacts. Hence the expected time
to seroconversion decreases and its variance also decrease as indicated in Table-5 and Fig.5.
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