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A R T I C L E  I N F O                              A B S T R A C T  
 

 

Multivariate failure data received much attention by many researchers, to name a few 
Akaike (1974), Schwarz (1978), Volinsky and Raftery (2000), Fan and Li (2000, 2001, 
2002). The basic assumption in Cox’s proportion hazard model is that the survival time of 
subjects are independent. This assumption may be violated some time and the collected 
data may exhibit the existence of correlation among the survival times of the chosen 
subjects. One popular approach to model correlated survival times is to use a frailty model. 
Unlike the Cox regression model, there are some challenges in parameter estimation in the 
Cox frailty model even without the task of model selection. When the correlation among 
the observations is not of interest, the marginal proportional hazard models have received 
much attention in the recent literature because they are semi-parametric models and retain 
the virtue of the Cox model. In this paper, the extension of the Cox regression model to the 
analysis of multivariate survival time data include Frailty and Marginal hazard models are 
discussed. Detailed illustrations are also provided. 
 
 
 
 
 

INTRODUCTION 
 

The basic assumption in Cox’s proportion hazard model is 
that the survival time of subjects are independent. This 
assumption may be violated some time and the collected data 
may exhibit the existence of correlation among the survival 
times of the chosen subjects. One popular approach to model 
correlated survival times is to use a frailty model. Unlike the 
Cox regression model, there are some challenges in parameter 
estimation in the Cox frailty model even without the task of 
model selection, refer to Akaike (1974), Schwarz (1978), 
Volinsky and Raftery (2000), Fan and Li (2000, 2001, 2002). 
 

The interpretations of the regression coefficients in the frailty 
model are different from those in the Cox model. 
Consequently, when the correlation among the observations is 
not of interest, the marginal proportional hazard models have 
received much attention in the recent literature because they 
are semi-parametric models and retain the virtue of the Cox 
model. 
 

In this paper, Multivariate survival analysis for Diabetic 
Retinopathy data has been discussed, and detailed illustrations 
are also provided. 
 

HARD Threshold Penalty 
 

In the discussion of Antoniadis (1997), Fan observed that the 
penalized least-squares estimator with the penalty function 
 
 
 

p(|θ|) = |θ|I(|θ| ≤ λ) + λ/2I(|θ| > λ) leads to the hard-
thresholding rule 
θ෠ = zI(|z| > λ) 
 

This penalty function does not over penalize the large value of 
  .|ߐ|
 

Fan proposed the following hard thresholding penalty 
function: 
 

pλ(|θ|) = λଶ − (|θ| − λ)ଶI(|θ| < λ) 
With the clipped L1-penalty function 
pλ(|θ|) = λ min(|θ|, λ) 
 

the solution is a mixture of soft and hard thresholding rule 
θ෠ = sgn(z)(|z|− λ)ାI(|z| ≤ 1.5λ) + zI(|z| > 1.5λ) 
 

Smoothly Clipped Absolute Deviation Penalty (SCAD) 
 

All of penalty functions introduced so far do not satisfy 
mathematical conditions imposed for a continuous and 
thresholding rule. The continuous differentiable penalty 
function defined by 
 

p′(θ) = I(θ ≤ λ) + (αିθ)శ
(ିଵ) I(θ > λ) for some  > 2 and θ > 0, 

improves the properties of the L1-penalty and the hard-
thresholding penalty function given by (2.1). We will call this 
penalty function as smoothly clipped absolute deviation 
(SCAD) penalty. This corresponds to a quadratic spline 
function with knots at  and . This penalty function leaves 
large value of θ not excessively penalized and makes the 
solution continuous. The resulting solution is given by 
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θ෠ = ൞
sgn(z)(|z| − )ା																								
{( − 1)z − sgn(z)}

− 2 												
z																																																						

when	|z| ≤ 2;											
when	2 < |z| ≤ ;
when	|z| > .											

 

 

This solution is due to Fan (1997). The procedures using the 
SCAD penalty simply referred as SCAD. 
 

Least Absolute Shrinkage and Selection Operator (LASSO) 
 

Suppose that we have data (xi,yi), i=1, 2, . . ., N, where  
xi=(xi1,..., xip)T are the predictor variables and yi are the 
responses. As in the usual regression set-up, we assume either 
that the observations are independent or that the yis are 
conditionally independent given the xijs. We assume that the 
xij are standardized so that Σixij/N = 0, Σixij

2/N = 1. 

Letting ෠ = ቀ෠ଵ, … ,෠୮ቁ
୘
, the lasso estimate (ෝ,෠) is defined 

by 

൫ෝ,෠൯ = arg min ൜∑ ቀy୧ −  −∑ ୨x୧୨୨ ቁ
ଶ

୒
୧ୀଵ ൠ subject to 

∑ ቚ୨ቚ୨ ≤ t 
Here t ≥ 0 is a tuning parameter. For all t, the solution for  is 
ෝ = y. For a detailed study refer to Tibshirani (1996). 
 

Akaike Information Criterion (AIC) 
 

The Akaike information criterion is a measure of the relative 
goodness of fit of a statistical model. AIC values provide a 
means for model selection. In the general case, the AIC is 
AIC = 2k − 2 ln(L) 
 

where k is the number of parameters in the statistical model, 
and L is the maximized value of the likelihood function for 
the estimated model. For a detailed study, refer to Akaike 
(1974). 
 

Bayesian Information Criterion (BIC) 
 

The Bayesian information criterion (BIC) or Schwarz 
criterion (also SBC, SBIC) is a criterion for model selection 
among a finite set of models. It is based, in part, on the 
likelihood function, and it is closely related to Akaike 
information criterion (AIC). When fitting models, it is 
possible to increase the likelihood by adding parameters, but 
doing so may result in overfitting. The BIC resolves this 
problem by introducing a penalty term for the number of 
parameters in the model. Akaike was so impressed with 
Schwarz's Bayesian formalism that he developed his own 
Bayesian formalism, now often referred to as the ABIC for "a 
Bayesian Information Criterion" or more casually "Akaike's 
Bayesian Information Criterion". 
 

Let {(yi , xi) : i = 1, . . . , n} be independent observations. 
Suppose that the conditional density function of yi given xi is f 
(yi | xi, θ), where θ  Θ RP, P being a positive integer. The 
likelihood function of θ is given by 
 

L୬(θ) = f(x; θ) = ෑ f	(y୧|x୧, θ)
୬

୧ୀଵ

 

 

where Y = (y1, . . . , yn). Let s be a subset of {1,. . . P}. Denote 
by θ(s) the parameter θ with those components outside s being 
set to 0 or some pre-specified values. The BIC proposed by 
Schwarz (1978) selects the model that minimizes 
 

BIC(s) = 	−2 log L୬{θ෠(s)} + ν(s) log n 

where θ෠(s) is the maximum likelihood estimator of θ(s) and 
ν(s) is the number of components in s. For a detailed study, 
refer to Akaike (1977), Schwarz (1978) 
 

Penalized Least Square and Penalized Likelihood 
 

Most variable selection procedures are related to penalized 
least squares. Suppose that we have the (d + 1) – dimensional 
random sample (xi, yi), i=1,…,n, from a population (x, y), 
where x is a d – dimensional random vector, and y is a 
continuous random variable. Consider a linear regression 
model 
 

y୧ = x୧୘β + ε୧ 
 

where β is unknown regression coefficients, and εi is a 
random error with mean zero and variance σ2. Define a 
penalized least square as 
 

Q(β) =
1
2
෍൫y୧ − x୧୘β൯

ଶ
୬

୧ୀଵ

+ n෍pλ୨୬ ቀቚβ୨ቚቁ
ୢ

୨ୀଵ

																					… (1) 

where pλjn(∙) is a given non-negative penalty function, and 
λjn’s are regularization parameters, which may depend on n 
and can be chosen by a data-driven criterion, such as cross-
validation (CV) and generalized cross-validation (GCV), refer 
to Craven and Wahba (1980). Minimizing equ. (1) yields a 
penalized least square estimator. Conditioning on xi, suppose 
that yi has a density f୧൛g൫x୧୘β൯, y୧ൟ, where g is a known link 
function. Let ℓ୧ = log f୧ denote the conditional log-likelihood 
of yi. Define a penalized likelihood as 
 

෍ ℓ୧൫g൫x୧୘β൯, y୧൯
୬

୧ୀଵ

− n෍pλ୨୬ ቀቚβ୨ቚቁ
ୢ

୨ୀଵ

 

 

The penalized likelihood approach can be directly applied for 
parametric models in survival analysis. Let T, C and x be 
respectively the survival time, the censoring time and their 
associated covariates. Correspondingly, let Z = min{T,C} be 
the observed time and δ = I (T ≤ C) be the censoring 
indicator. It is assumed that T and C are conditionally 
independent given x and that the censoring mechanism is non-
informative. When the observed data {(xi, Zi, δi): i = 1,…,n} 
is an independently and identically distributed random sample 
from a certain population (x, Z, δ), a complete likelihood of 
the data is given be 
 

L = ෑ f(Z୧|x୧)ෑFത(Z୧|x୧)
ୡ୳

= ෑh(Z୧|x୧)ෑFത(Z୧|x୧)
୬

୧ୀଵ୳

																																																		 . . . (2) 

 

where the subscripts c and u denote the product of the 
censored and uncensored data respectively, and f(t|x), Fത(t|x) 
and h(t|x) are the conditional density function, the 
conditional survival function and the conditional hazard 
function of T given x. 
 

Generalized Cross Validation (GCV) estimate 
 

The generalized Cross Validation estimation of  is the 
minimizer of V() 

V() =
(1/n)ฮ൫I − A()൯yฮ

ଶ

ൣ(1/n)tr൫I − A()൯൧ଶ
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where A() is the n × n influence matrix, which satisfies 

ቌ
f୬,(tଵ)

⋮
f୬,(t୬)

ቍ = A()y,								y = (yଵ, … , y୬) 

 

The GCV estimates the  which minimizes the predictive 
mean square error R() defined by 
 

R() =
1
n
෍ቀf(t୧)− f୬,(t୧)ቁ

ଶ
୬

୧ୀଵ

 

 

fn,(t), t  [0,1] is also a Bayes estimate of f(t), if f is endowed 
with a certain zero mean Gaussan prior, which is partially 
improper. 
 

Cox’s Proportional Hazard Model 
 
Let tଵ଴ < ⋯ < t୒଴  denote the ordered observed failure times. 
Let (j) provide the label for the item falling at t୨଴ so that the 
covariates associated with the N failures are x(1),...,x(N). Let Rj 
denote the risk set right before the time t୨଴: 
 

R୨ = ൛i: Z୧ ≥ t୨଴ൟ 
The Cox’s proportional hazards models is given by, 
 

h(t|ܠ) = h଴(t) exp(x୘β)                                                … (3) 
 

with the baseline hazard functions h0(t) and parameter β. 
Earlier the likelihood discussed in equ. (2), the likelihood 
becomes 
 

L = ෑh଴൫Z(୧)൯exp൫x(୧)
୘ β൯

୒

୧ୀଵ

ෑ exp൛−H଴(Z୧) exp൫x୧୘β൯ൟ
୬

୧ୀଵ

 

 

where H0(·) is the cumulative baseline hazard function. If the 
baseline hazard function has a parametric form, h0(θ,·) say, 
then the corresponding penalized log-likelihood function is 
 

∑ ൣlog൛h଴൫θ, Z(୧)൯ൟ+ x(୧)
୘ β൧୒

୧ୀଵ − ∑ ൛H଴(θ, Z୧) exp൫x୧୘β൯ൟ୒
୧ୀଵ − n∑ pλ ቀቚβ୨ቚቁ

ୢ
୨ୀଵ    … (4) 

 

Maximizing (4) with respect to (θ, β) yields the maximum 
penalized likelihood estimator. 
 

Pseudo Likelihood 
 

Pseudo likelihood is an approximation to the joint probability 
distribution of a collection of random variables. The practical 
use of this is that it can provide an approximation to the 
likelihood function of a set of observed data which may either 
provide a computationally simpler problem for estimation, or 
may provide a way of obtaining explicit estimates of model 
parameters. 
 

Given a set of random variables X = X1, X2… Xn and a set E 
of dependencies between these random variables, where {Xi, 
Xj}  E implies Xi is conditionally independent of Xj given 
Xi's neighbors, the pseudo likelihood of  X = (x1, x2,…,xn) is 
 

Pr(X − (ݔ −ෑܲݎ൫ ௜ܺ − |௜ݔ ௝ܺ − ௝ݔ ൛	ℎ݅ܿℎݓ	ݎ݋݂	݆	݈݈ܽ	ݎ݋݂	 ௜ܺ, ௝ܺൟ߳ܧ൯
௜

 
 

Here X is a vector of variables; x is a vector of values. The 
expression X = x above means that each variable Xi in the 
vector X has a corresponding value xi in the vector x. The 
expression Pr(X = x) is the probability that the vector of 
variables X has values equal to the vector x. Because 
situations can often be described using state variables ranging 
over a set of possible values, the expression Pr(X = x) can 

therefore represent the probability of a certain state among all 
possible states allowed by the state variables. The Pseudo-log-
likelihood is a similar measure derived from the above 
expression. Thus 
 

݃݋݈ ܺ)ݎܲ = (ݔ = ෍݈ݎܲ݃݋൫ ௜ܺ − |௜ݔ ௝ܺ − ൛	݈݈ܽ	ݎ݋݂	௝ݔ ௜ܺ , ௝ܺൟ߳ܧ൯
௜

 

 

One use of the pseudo-likelihood measure is as an 
approximation for inference about a Markov or Bayesian 
network, as the pseudo-likelihood of an assignment to Xi may 
often be computed more efficiently than the likelihood, 
particularly when the latter may require marginalization over 
a large number of variables. 
 

Frailty Model 
 

The popular approach to modeling correlated survival times is 
to use a frailty model. Consider the Cox proportional hazard 
frailty model, in which it is assumed that the hazard rate for 
the jth subject in the ith subgroup is 
 

ℎ௜௝൫ݐหݔ௜௝ ௜൯ݑ, = ℎ଴(ݐ)ݑ௜ ൯ߚ௜௝்ݔ൫݌ݔ݁ , ݅ = 1,2, … ,݊; ݆ = 1,2, … ,  ௜      ... (5)ܬ
 

where the ui’s are associated with frailties, and they are a 
random sample from some population. It is frequently 
assumed that given the frailty ui, the data in the ith group are 
independent. The most frequently used distribution for frailty 
is the gamma distribution due to its simplicity. Assume 
without loss of generality that the mean of frailty is 1 so that 
all parameters involved are estimable. For the gamma frailty 
model, the density of u is 
 

(ݑ)݃ =
(ݑߙ−)	݌ݔఈିଵ݁ݑఈߙ

(ߙ)߁  
 

From equ. (2), the full likelihood of “pseudo-data” 
{(ui,xij,Zij,ij):i=1,2,…,n; j=1, 2,…, Ji} is 
 

ෑෑቂ൛ℎ൫ݖ௜௝|ݔ௜௝ ௜൯ൟݑ,
ఋ೔ೕܨത൫ݖ௜௝|ݔ௜௝,ݑ௜൯ቃ

௃೔

௝ୀଵ

௡

௜ୀଵ

ෑ݃(ݑ௜)
௡

௜ୀଵ

 

 

Integrating the full likelihood function with respect to 
u1,…,un, the likelihood of the observed data is given by 
 

,ߚ)ܮ (ߠ = ݌ݔ݁ ቄ்ߚቀ∑ ∑ ௜௝ݔ௜௝ߜ
௃೔
௝ୀଵ

௡
௜ୀଵ ቁቅ∏

ఈഀ∏ ൛௛బ(௭೔ೕ)ൟഃ೔ೕ಻೔
ೕసభ

௰(ఈ)ቄ∑ ுబ(௭೔ೕ)௘௫௣ቀ௫೔ೕ
೅ఉቁ಻೔

ೕసభ ାఈቅ
ಲ೔శഀ

௡
௜ୀଵ      ... (6) 

 

where θ=(, H) and ܣ௜ = ∑ ௜௝ߜ
௃೔
௝ୀଵ . The log-likelihood of the 

observed data is 
 

ℓ௙(ߚ, (ߠ = ෍ቐ෍ߜ௜௝ ݃݋݈ ℎ(ݖ௜௝)
௃೔

௝ୀଵ

௡

௜ୀଵ

− ቎(ܣ௜ + (ߙ ݃݋݈ ቐ෍ܪ଴(ݖ௜௝) ൯ߚ௜௝்ݔ൫݌ݔ݁
௃೔

௝ୀଵ

+ ቑ቏ቑߙ

+ ෍ቐ்ߚ ቌ෍ߜ௜௝ݔ௜௝

௃೔

௝ୀଵ

ቍ+ ߙ ݃݋݈ ߙ
௡

௜ୀଵ

− ݃݋݈ 																																																										ቑ(ߙ)߁ . . . (7) 

To eliminate the nuisance parameter h(),  we again employ 
the profile likelihood method. Consider the “least 
informative” non parametric modeling for H0(): 

(ݖ)଴ܪ = ෍ߣ௟ݖ)ܫ௟ ≤ (ݖ
ே

௟ୀଵ

																																																	 . . . (8) 
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where{z1,…,zN} are pooled observed failure times. 
 

Substituting equ.(8) in equ.(7), then differentiating it with 
respect to l, l = 1,…,N, the root of the corresponding score 
functions should satisfy the following equations: 
 

௟ିଵߣ = ෍
௜ܣ) + ∑(ߙ ௟ݖ)ܫ ≤ (௜௝ݖ ൯ߚ௜௝்ݔ൫݌ݔ݁

௃೔
௝ୀଵ

∑ ∑ (௜௝ݖ)଴ܪ ൯ߚ௜௝்ݔ൫݌ݔ݁
௃೔
௝ୀଵ + ேߙ

௞ୀଵ

௡

௜ୀଵ

݈	ݎ݋݂, = 1, … ,݊									. . . (9) 
 

the above solution does not admit a close form, neither does 
the profile likelihood function. However, the maximum 
profile likelihood can be implemented as follows. With initial 
values ,  and I, update {i} from equ. (9) and obtain the 
penalized profile likelihood of equ. (7). with known H0(.) 
defined by equ. (8), maximize the penalized likelihood equ. 
(7) with respect to (,), and iterate between these two steps. 
When the Newton-Raphson algorithm is applied to the 
penalized likelihood equ. (7), it involves the first two order 
derivatives of the gamma function, which may not exist for 
certain value of . One approach to avoid this difficulty is the 
use of a grid of possible values for the frailty parameter  and 
finding the maxima over this discrete grid, as suggested by 
Nielsen et. al. (1992). 
 

Prediction and model error 
 

When the covariate x is random, if ̂(ݔ)ߤ is a prediction 
procedure constructed using the present data, the prediction 
error is defined as 
 

(ߤ̂)ܧܲ = ܻ}ܧ −  ଶ{(ݔ)ߤ̂
 

where the expectation is only taken with respect to the new 
observation (x,Y). The prediction error can be decomposed as  
(ߤ̂)ܧܲ = (ݔ|ܻ)ݎܸܽܧ + (ݔ|ܻ)}ܧ −  ଶ{(ݔ)ߤ̂
 

The first component is inherently due to stochastic errors. The 
second component is due to lack of fir to an underlying 
model. This component is called a model error and is denoted 
by (ߤ̂)ܧܯ. For the Cox proportional hazards model. 
 

(ݔ)ߤ = (ݔ|ܶ)ܧ

= න ℎ଴(ݐ)݁݌ݔ	݌ݔ݁(ߚ்ݔ) ቊ−න ℎ଴(ݐ)݁݌ݔ	ݑ݀(ߚ்ݔ)
௧

଴
ቋ

∞

଴
 ݐ݀

In the following simulation examples, it will be taken that 
h0(t) ≡ 1.  Thus by some algebra calculation, 
(x)ߤ =  (ߚ்ݔ)	݌ݔ݁
For the Cox frailty model with h0(t) ≡ 1, 
(ݔ)ߤ =  (ଵିݑ)ܧ(ߚ்ݔ)݌ݔ݁
 

The factor E(u-1), due to the frailty, is dropped off when the 
performance of two different approaches is compared in terms 
of their Relative Model Errors (RME), defined as the ratio of 
the model errors of the two approaches. Therefore, the model 
error will be defined as 
መ൯ߚ்ݔ−൫݌ݔ൛݁ܧ −  ൟଶ(଴ߚ்ݔ−)݌ݔ݁
 

for both the Cox model and the frailty model. 
 

Marginal Hazard Model 
 

As discussed in section 1, when the correlation among the 
observations is not of interest, the marginal proportional 
hazard models have received much attention in the recent 
literature because they are semi-parametric models and retain 
the virtue of the Cox model. Let Tik be the kth type of failure 
occurs on the ith unit, and let Cik be the corresponding 
censoring time. Define Xik = min (Tik, Cik) and ik = I(Tik  

Cik). Also, let Zik = (Z1ik,…, Zpik) denote the covariate vector 
for the ith unit with respect to the kth type of failure. The 
failure time vector Ti = (Ti1,…, Tik) and the censoring time 
vector Ci = (Ci1,…,Cik) are assumed to be independent 
conditional on the covariates vector ܼ௜ = ൫ܼ௜ଵ , … ,ܼ௜௞ ൯ (i = 
1,…, n). further assume that (Xi, Ci, Ai) (i = 1,…, n) are 
independent and identically distributed random elements. If 
Tik or Zik is missing, we set Cik = 0, which ensures that Xik = 0 
and ik = 0. It is natural to formulate the marginal distribution 
for each type of failure with a proportional hazard model. 
Depending on whether the baseline hazard functions are 
identical or are different among the M types of failures, the 
hazard function of the ith unit for the kth type of failure is 
 

(௜௞ܼ,ݐ)௞ߣ =  ఉ௓೔ೖ(௧)                                            … (10)݁(ݐ)଴ߣ
 

where 0(t) is unspecified baseline hazard functions, and  = 
(1,…, p) is a   p × 1 vector of unknown regression 
parameters. Then the ‘partial likelihood functions’ for  are 

෨()ܮ = ෑෑ൝
݁ఉ௓೔ೖ(௑೔ೖ)

∑ ∑ ௝ܻ௟( ௜ܺ௞)݁ఉ௓೔ೖ(௑೔ೖ)ெ
௟ୀଵ

௡
௝ୀଵ

ൡ
೔ೖெ

௞ୀଵ

௡

௜ୀଵ

 

The corresponding ‘score functions’ is 

෩ܷ() = ෍෍ ௜௞ ቊܼ௜௞( ௜ܺ௞)−
ܵ̅(ଵ)(, ௜ܺ௞)
ܵ̅(଴)(, ௜ܺ௞)ቋ

೔ೖெ

௞ୀଵ

௡

௜ୀଵ

 

 

where ܵ̅(௥)(, (ݐ = ∑ ܵ௞
(௥)(, ெ(ݐ

௞ୀଵ , (r =0,1) and ܵ௞
(଴)(, (ݐ =

∑ ௝ܻ௞(ݐ)݁ఉ௓ೕೖ(௧)௡
௝ୀଵ , ܵ௞

(ଵ)(, (ݐ = ∑ ௝ܻ௞(ݐ)݁ఉ௓ೕೖ(௧)
௝ܼ௞(ݐ)௡

௝ୀଵ , 
(k = 1,…,M)it is observed that the unique estimator ෨ by 
solving ൛ ෩ܷ() = 0ൟ. Although observations are generally 
correlated within the same unit, the estimator ෨ can be proven 
to be consistent for  as long as the marginal models are 
correctly specified. The derivative matrix − డమ ௟௢௚ ௅෨()

డమ
ቚ
ୀത

 

however, does not provide a valid variance-covariance 
estimator for ෩ܷ(). 
For large n and relatively small M, the statistic ෩ܷ() is 
approximately            p-variate normal with mean 0 and with 
(estimated) covariance matrix   
෨൫෨൯ܤ = ∑ ∑ ∑ ෩ܹ௜௞൫෨൯ ෩ܹ௜௟൫෨൯

ெ
௟ୀଵ

ெ
௞ୀଵ

௡
௜ୀଵ , where under equ. 

(10) 
 

෩ܹ௜௞() = ௜௞ ቊܼ௜௞( ௜ܺ௞)−
ܵ̅(ଵ)(, ௜ܺ௞)
ܵ̅(଴)(, ௜ܺ௞)ቋ

−෍෍
௝௟ ௜ܻ௞൫ ௝ܺ௟൯݁ఉ

௓೔ೖ(௑ೕ೗)

ܵ̅(଴)൫, ௝ܺ௟൯
ቊܼ௜௞൫ ௝ܺ௟൯

ெ

௟ୀଵ

௡

௝ୀଵ

−
ܵ̅(ଵ)൫, ௝ܺ௟൯
ܵ̅(଴)൫, ௝ܺ௟൯

ቋ 
 

Furthermore, the estimator ෨ is approximately p-variate 
normal with mean  with (estimated) covariance matrix 
෩൫෨൯ܦ =  ሚିଵ൫෨൯, whereܣ෨൫෨൯ܤሚିଵ൫෨൯ܣ
 

(ߚ)ሚܣ = ෍෍ ௜௞ ቊ
ܵ̅(ଶ)(, ௜ܺ௞)
ܵ̅(଴)(, ௜ܺ௞)

ெ

௞ୀଵ

௡

௜ୀଵ

−
ܵ̅(ଵ)(, ௜ܺ௞)ܵ̅(ଵ)(, ௜ܺ௞)

ܵ̅(଴)(, ௜ܺ௞)ଶ
ቋݎ݁݀݊ݑ	ݍ݁. (10) 
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(ߚ)ሚܣ = − డమ ௟௢௚ ௅෨()
డమ

. In the case of M=1, the matrix ܦ෩൫෨൯ 
reduces to the Lin-Wei robust variance-covariance estimator. 
If the marginal models are correctly specified and if the 
observations’ failure times within the same unit are 
independent, then ܤ෨൫෨൯ is asymptotically equivalent to ܣሚ൫෨൯. 
 ෩൫෨൯ as, respectively, the naive and robustܦ ሚିଵ൫෨൯ andܣ
variance covariance estimators for ෨, and call 
෩ܷ (0)ܣሚିଵ(0) ෩ܷ(0) and ෩ܷ (0)ܤ෨ିଵ(0) ෩ܷ(0) the naive and 
robust log-rank statistics, respectively. To test hypotheses 
involving several components of , the multivariate general 
linear hypothesis can be expressed as H0: L = d, where L is 
an r × p matrix of constants and d is an r × 1 vector of 
constants. The robust Wald statistic for testing H0 is൫L෨ −
d)൛LD෩൫෨൯Lൟ

ିଵ൫L෨ − d൯

, which has an approximate 2 

distribution with r degrees of freedom. 
 

Numerical illustration for Frailty Model 
 

Following the approach of Morris et. al. (1994), the proposed 
frailty model is applied to the patients getting treatment in the 
month of March 2013 at Aravind Eye care Hospital, 
Puducherry. A sample of 100 Diabetic Retinopathy patients 
were selected and observed during a week of March 2012 for 
elderly patients between the age group of 60 to 65 by simple 
random sampling method. 
 

A full description of this data set is as follows: 
 

x1 – treatment indicator 

 xଵ = ቄ1	if	treated	at	a	nursing	home
0	otherwise																																		 

x2 – variable age 
 xଶ = {k	such	that	k ∈ (60,65)} 
x3 – gender 
 xଷ = ቄ1	if	Male				

0	if	Female 
x4 – marital status 
 xଷ = ቄ1	if	Married

0	otherwise 
 

x5, x6 and x7 are three binary health status indicators, 
corresponding from the best health to the worst health. The 
model suggested by Morris et. al. (1994) is 
 

h(t|x) = h଴(t) exp൭෍x୧β୧

଻

୧ୀ଴

൱ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where h0(t) is the base line hazard function, using gamma 
frailty as discussed earlier using the algorithm suggested by 
Lin (1993). The Cox model is fitted with three parametric and 
the nonparametric baseline hazard models to this data set. 
Only x2 is standardized as other variables are binary. 
Penalized partial likelihood approach with the SCAD, L1 and 
hard penalty are applied to this data set. The thresholding 
parameter λ, selected by the GCV, is 0.01, 0.02 and 0.08 for 
the SCAD, LASSO and HARD, respectively. The best subset 
variable selection with AIC and BIC is also computed. For 
estimating the parameters, the algorithm and programme 
suggested by Lin (MULCOX, 1990)*, Lin (MULCOX2, 
1993)** has been used. The Estimated coefficients and their 
standard errors are shown in the following table  
 

From the above table it observed that the age variable is not 
significant. However it is very significant when compare with 
interactions. It is evident from the above table that elderly 
patients are likely stay at nursing home. The interaction 
between the variables treatment and gender selected by SCAD 
and HARD seems to be significant, although the treatment is 
not significant. It is clearly evident from the real life 
phenomena that, men prefer to stay at a nursing home with 
treatment, while elderly men like to leave a nursing home 
earlier. The result exhibit the same scenario as suggested by 
Morris et. al. (1994). 
 

Numerical illustration for Marginal Model 
 

The Diabetic Retinopathy study was conducted by the 
National Eye Institute to assess the effectiveness of laser 
photocoagulation in delaying the onset of blindness in patients 
with diabetic retinopathy (1981). Prevalence of Cataract 
Blindness in a rural Puducherry was conducted by the 
Aravind Eye care, Puducherry, to assess the cataract blindness 
among male and female patients (2013). Among the patients, 
the Diabetic Retinopathy has been identified. Between 
January 2012 to December 2013, 100 patients were entered 
the study. Following the approach of Huster et al. and Liang 
et al., the data were collected from Aravind Eye care Hospital, 
one eye of each patient was randomly selected for 
photocoagulation and the other eye was observed without 
treatment. The patients were observed for the occurrence of 
blindness in the left and right eyes. One anticipates some 
dependence between a patient’s two eyes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 Estimated Coefficients and Standard Errors 
 

 MLE Best (BIC) Best (AIC) SCAD LASSO HARD 
TRT -0.02(0.05) 0(−) 0(−) 0(−) 0(−) 0(−) 
Age -0.09(0.03) 0(−) -0.04(0.02) -0.06(0.02) -0.02(0.01) 0(−) 

Gender 0.48(0.09) 0.34(0.04) 0.29(0.07) 0.39(0.07) 0.25(0.04) 0.36(0.03) 
Married 0.18(0.13) 0(−) 0.11(0.07) 0.14(0.07) 0.03(0.02) 0.14(0.06) 
Health1 0.01(0.07) 0(−) 0(−) 0(−) 0(−) 0(−) 
Health2 0.19(0.04) 0.20(0.04) 0.23(0.04) 0.19(0.04) 0.11(0.02) 0.17(0.04) 
Health3 0.50(0.08) 0.53(0.07) 0.56(0.08) 0.56(0.07) 0.33(0.05) 0.48(0.08) 

TRT*Age 0.09(0.04) 0(−) 0(−) 0(−) 0(−) 0(−) 
TRT*Gender -0.07(0.11) 0(−) -0.12(0.11) -0.13(0.10) 0(−) -0.12(0.10) 
TRT*Married -0.09(0.14) 0(−) 0(−) 0(−) 0(−) 0(−) 
TRT*Health1 0.01(0.06) 0(−) 0(−) 0(−) 0(−) 0(−) 
TRT*Health2 0.23(0.05) 0.21(0.04) 0.19(0.04) 0.18(0.04) 0.10(0.02) 0.18(0.04) 
TRT*Health3 0.50(0.08) 0.54(0.07) 0.53(0.07) 0.52(0.07) 0.36(0.04) 0.57(0.07) 
Age*Gender 0.13(0.04) 0(−) 0.12(0.04) 0.11(0.04) 0.02(0.01) 0.03(0.04) 
Age*Married 0.06(0.06) 0(−) 0(−) 0.06(0.06) 0(−) 0(−) 

Gender*Married -0.05(0.13) 0(−) 0(−) 0(−) 0(−) 0(−) 
 

*  a computer program for the Cox regression analysis of multiple failure time variables 
** a general computer program for the Cox regression analysis of multivariate failure time data. 
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Consider the model given in equ. (10) with Zik = (Z1ik, Z2ik, 
Z3ik)                  (i = 1,…,126; k = 1,2), where 
Zଵ୧୩ =

൜ 1	if	the	k୲୦	eye	of	the	i୲୦	patient	was	on	treatment,
0	otherwise;																																																																																

  

Zଶ୧୩ = ቊ1	if	the	i୲୦	patient	adult	onset	diabetes,						
0	if	the	i୲୦	patient	juvenile	onset	diabetes;

 

and Z3ik = Z1ik × Z2ik. 
The estimates of regression parameters for the Diabetic 
Retinopathy study based on the data set are given in Table 2. 
 
 
 
 
 
 
 
 
 
 
CONCLUSION 
 

The robust standard error estimates are appreciably smaller 
than the naive estimates. The treatment appears to be 
effective, and this effect is much stronger for adult onset 
diabetes than for juvenile onset diabetes. The Liang et al. 
method produces very similar parameter estimates and the 
standard error estimates are almost identical to our robust 
ones. The Liang et al. method produces similar results 
comparing to other methods and almost identical to robust 
ones. In the case of Huster et al., the estimates are fairly close 
to the naive estimates. The marginal approach is expected to 
be more efficient than the Frailty model provided that the 
Frailty distribution is correctly specified. However the types 
of dependence by the Frailty model are quite limited and 
fitting is rather difficult, cumbersome. 
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Table 2 Estimates of Regression Parameters for the 
Diabetic 

Retinopathy Study* 
 

Covariate Methods 
Naive Robust Liang Huster 

Treatment (Z1) -0.202 (0.148) -0.301 (0.145) -0.201 (0.135) -0.41 (0.15) 
Diabetic type (Z2) 0.119 (0.115) 0.221 (0.133) 0.118 (0.122) 0.16 (0.12) 

Interaction (Z1 × Z2) -0.615 (0.161) -0.615 (0.224) -0.613 (0.213) -0.81 (0.14) 
 
* The standard errors estimates are given in parentheses 
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