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INTRODUCTION 
                

Let n  be an integer. A set of positive integers 

square for all mji 1 ; such a set is called a Diophantine 

of such set was studied by  Diophantus. He studied the following problem. Find four (positive ration

product of any two of them increased by 1 is a perfect square. He obtained the following solution: 

The first set of four positive integers with the above property was found by Fermat, and it was 

solution   4,2,, brarrrbaba 
may refer [3- 18]. In this communication we extend the Diophantine triple involving Pell numbers to a quadruple

property  1D .   
 

Method of Analysis 

Let   222 ,  nn pbpa  where 
 

2

21
n

np




 
 
Let c  be the non –zero integer such that       
 

2
2 1 ncp                                                                

 

2
22 1 ncp                                                             

  

From (1), we get 
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                             A B S T R A C T  
 

 

In this paper, we search for the sequence of triples involving Pell numbers 

       ,........,,,,,,,,,,, fededcdcbcba  

them added with one is a perfect square. Also, we prove that this sequence of triple can be 
extended to a sequence of quadruples with the same property. 
 
 
 
 

 
 
 
 
 
 

be an integer. A set of positive integers  maaaa ,........,,, 321 is said to have the property D(n) if 

; such a set is called a Diophantine m tuple or a np  set of size m
of such set was studied by  Diophantus. He studied the following problem. Find four (positive ration

product of any two of them increased by 1 is a perfect square. He obtained the following solution: 

The first set of four positive integers with the above property was found by Fermat, and it was 

 ,b where   21 2 seerab  . For an extensive review of various articles one 

18]. In this communication we extend the Diophantine triple involving Pell numbers to a quadruple

 
22

21
nn


 be any two integers such that 1ab  is a perfect square.
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ON THE EXTENDIBILITY OF THE SEQUENCES OF DIOPHANTINE TRIPLES  
 

Trichy 

In this paper, we search for the sequence of triples involving Pell numbers 

  such that the product of any two of 

them added with one is a perfect square. Also, we prove that this sequence of triple can be 
extended to a sequence of quadruples with the same property.  

is said to have the property D(n) if naa ji   is a perfect 

m .The problem of construction 

of such set was studied by  Diophantus. He studied the following problem. Find four (positive rational) numbers such that the 

product of any two of them increased by 1 is a perfect square. He obtained the following solution: 
16

105
,

4

17
,

16

33
,

2

1
(see [1] ). 

The first set of four positive integers with the above property was found by Fermat, and it was  .120,8,3,1 Euler gave the 

For an extensive review of various articles one 

18]. In this communication we extend the Diophantine triple involving Pell numbers to a quadruple with the 

is a perfect square. 

                                                                                                                   (1) 

                                                                                                                 (2)   
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np
c

2

2 1



                                                                                                                                                                                       (3) 

 

Substituting (3) in (2), we notice that 
 

  2
2222

2 1  nnn ppp                                                                                                                                                        (4) 

Let  
 

TpX n2                                                                                                                                                                                 (5) 
 

TpX n 22                                                                                                                                                                               (6) 

 
In view of (5) and (6) in (4), we obtain 
 

122  DTX where abD                                                                                                                                                         (7) 
 
Choosing the initial solution to the Pellian equation (7), as 
 

1, 0120   TpX n  , 

we get  
 

nn pp 212    

 

2212   nn pp        

 
Substituting the values of   in (1), we get 
 

22122 2   nnn pppc  
 

Thus, we notice that  221222,22,2  npnpnpnpnp  is a Diophantine triple with the property D(1). 

Let d  be the non –zero integer such that      
   

2
11 bd                                                                                                                                                                                     (8) 

 
 

2
11 cd                                                                                                                                                                                     (9) 

 
    

From (8), we get 
 
 

b
d

12
1 


                                                                                                                                                                                    (10) 

 

Now, Let e  be the non –zero integer such that       
 
 

2
21 ec                                                                                                                                                                                     (11) 

 
 

2
21 ed                                                                                                                                                                                    (12)    

 

From (11), we get 
 

c
e

12
2 


                                                                                                                                                                                     (13) 

 

Let f  be the non –zero integer such that       
 
 

2
31 fd                                                                                                                                                                                    (14) 

 

2
31 fe                                                                                                                                                                                    (15)    
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From (14), we get 
 

d
f

12
3 


                                                                                                                                                                                    (16) 

Choose 

22122122121 23,2   nnnnn ppppp   

dppcpp nnnn   3222232222 ,   
 

enpnpnpdnpnpnp  4232223,4232223   

                                                                                                

and applying the same procedure as explained above, we evaluate that    
 

22122 44   nnn pppd  

3222122 2762   nnnn ppppe  
               

423222122 2413103   nnnnn pppppf  
 

Thus, we get the following sequence of triples with the property  1D . 
 

 2241242,221222,22  npnpnpnpnpnpnp ,  32222712622,2241242,221222  npnpnpnpnpnpnpnpnpnp ,   

 423222122322212222122 2413103,2762,44   nnnnnnnnnnnn pppppppppppp

 Hence, we acquire that 

       ,........,,,,,,,,,,, fededcdcbcba   is a sequence of triples with the property )1(D .                     
 

The sequence of triples can be extended to a sequence of quadruples as follows 
 

Let u  be any non-zero integer such that 
 

2
11 ua                                                                                                                                                                                     (17) 

 

2
21 ub                                                                                                                                                                                     (18) 

 

2
31 uc                                                                                                                                                                                     (19) 

 

By using the initial solution to (7), its general solution is represented by  
 

 

   




 









1

12

1

12
2

1 n

n

n

nn DpDpX  

   




 









1

12

1

12
2

1 n

n

n

nn DpDp
D

T  

 

Therefore,  
 

DpX n  
2

121   
 

121 2  npT  
 

Take   

12
2

12111 2   nn apDpaTX                                                                                                                                       (20) 
 

112
2

12112 2   nn bpDpbTX                                                                                                                               (21)     
 

12
2

12113 2   nn cpDpcTX                                                                                                                                       (22) 
 

Substituting (20) in (17), we obtain 
 

  3
12

2
122222122

2
1222 442422   nnnnnnnnn pppppppppu  

Thus, we get 
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  3
12

2
122222122

2
122222122222 442422, 2,,   nnnnnnnnnnnnnn pppppppppppppp  is a Diophantine 

quadruple with the property )1(D . 

Let v  be any non-zero integer such that 
 

2
11 vb                                                                                                        

2
21 vc  

2
31 dv  

Let w  be any non-zero integer such that 
2

11 wc  

2
21 wd  

2
31 ew  

Let x  be any non-zero integer such that 
 

2
11 xd  

2
21 xe  

2
31 xf  

 

Consider 
 

   2212
2

22121 2   nnnn ppbDpp         2212
2

22122 2   nnnn ppcDpp                              

   2212
2

22123 2   nnnn ppdDpp  

   3222
2

32221 2   nnnn ppcDpp  

   3222
2

32222 2   nnnn ppdDpp  

   3222
2

32223 2   nnnn ppeDpp  

   423222
2

4232221 2   nnnnnn pppdDppp  

    423222
2

4232222 2   nnnnnn pppeDppp                                                                            

   423222
2

4232223 2   nnnnnn pppfDppp  
 

and repeating the same procedure as explained above, we find that 
 

        
 22122

22122222212222212

2

2212222

24

428424









nnn

nnnnnnnnnnnnn

ppp

pppppppppppppv

  
        
 22122

22122221223222221223222

2

2212222122

444

4442824

4424













nnn

nnnnnnnnnnnnn

nnnnnn

ppp

ppppppppppppp

ppppppw

  

 
  
  

 3222122

322212222122

42322222122

423222

2

322212222122

27624

42762448

444

2762444





























nnnn

nnnnnnn

nnnnnn

nnn

nnnnnnn

pppp

ppppppp

pppppp
ppp

pppppppx

Thus, we 

obtain the following sequence of quadruples with the property )1(D . 
  

  

        2212222122222212222212

2
2212222221222212222

244284

24,44,2,









nnnnnnnnnnnn

nnnnnnnnnnn

pppppppppppp

ppppppppppp
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

  
        

 22122

22122221223222221223222

2

2212222122

32221222212222122

444

4442824

4424

,2762,44,2

















nnn

nnnnnnnnnnnnn

nnnnnn

nnnnnnnnnn

ppp

ppppppppppppp

pppppp

pppppppppp



  

 
  
  

 3222122

322212222122

42322222122
423222

2
322212222122

423222122322212222122

27624

42762448

444

2762444

,2413103,2762,44
































nnnn

nnnnnnn

nnnnnn
nnn

nnnnnnn

nnnnnnnnnnnn

pppp

ppppppp

pppppp
ppp

ppppppp

pppppppppppp

 Hence, we attain that  
 

       ........,,,,,,,,,,,,,,, xfedwedcvdcbucba    is a sequence of quadruples such that the product of any two of them 

increased by 1 is a perfect square. 
 

Some numerical examples for the above sequences of Diophantine quadruple with property )1(D  are presented below 
 

n
  ucba ,,,   vdcb ,,,   wedc ,,,   xfed ,,,  

1
 

 2380,24,12,2   80852,70,24,12   183260,176,70,24  








23064468

,468,176,70
 

2
 

 470844,140,70,12
 

 15994836,408,140,70
 

 234423628,1026,408,140  








4567858820

,2728,1026,408
 

3
 

 93222428,816,408,70
 

 3166818340,2378,816,408
 

 6415534514,5980,2378,816 
 











 11100442003259

,15900,5980,2378
 

 

CONCLUSION 
  

In this communication, we have exhibited the sequence of quadruple involving Pell numbers with the property )1(D . To 

conclude, one may search for the sequence of quadruples and quintuples consist of various numbers with some other properties. 
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