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A R T I C L E  I N F O                              A B S T R A C T  
 

 

We prove a common fixed point theorem in fuzzy metric space and present some common 
fixed point theorems for weakly compatible mappings in fuzzy 3- metric spaces under 
various conditions. 
 
 
 
 
 
 
 
 
 
 
 
 
 

INTRODUCTION 
 

The concept of fuzzy Set was introduced by Zadeh [20] in 
1965. Kramosil and Michalek [8] introduced fuzzy metric 
space, George and Veermani [4] modified the notion of fuzzy 
metric spaces with the help of continuous t-norm. Many 
researchers have obtained common fixed point theorems for 
mappings satisfying different types of commutative 
conditions. Consequently in due course of time some metric 
fixed point results were generalized to fuzzy metric spaces by 
various authors. We know that that 2-metric space is a real 
valued function of a point triples on a set X, which abstract 
properties were suggested by the area function in Euclidean 
spaces. Now it is natural to expect 3-Metric space, which is 
suggested by the volume function. Singhi J, Bhardwaj R, 
Agrawal S and Shrivastava R [19] studies fuzzy 3 - metric 
space. In the present paper we are proving a common fixed 
point theorem for fuzzy3-metric spaces for weakly compatible 
mapping.  
 

Definitions  
  

Definition:  A fuzzy set A on X is a function with domain 
[0,1].X and values in [0, 1] i.e.              A : X   [0,1] . 
 

Definition:  A binary operation *: [0,1] x [0,1] x [0,1] x [0,1]  
 [0,1] is  called a continuous t-norm if ([0,1], *) is an 
abelian topological monoidies with unit 1 such that a1 * b1 * 
c1 *d4  ≥ a2 * b2 * c1 *d4  , whenever a1 ≥ a2 , b1 ≥ b2 , c1 ≥ c2 , 
d1 ≥ d2  for all a1, a2, b1, b2, c1 , c2 and  d1 , d2 are in  [0,1]. 
 
 

Definition: The 3-tuple (X,M,*) is called a fuzzy 3- metric 
space if X is an arbitrary set, * is continuous t-norm and M is 
a fuzzy set in X 4 x [0,∞) satisfying the followings conditions 
and  t1, t2,t3,t4for all x,y,z,w,u  > 0 
 

1. M(x,y,z,w,0) = 0  
2. M(x,y,z,w,t) = 1 for all t>0  
3. M(x,y,z,w,t) = M(x,w,z,y,t) = M(y,z,w,x,t) = 

M(z,w,x,y,t) = ........  
4. M(x,y,z,w,t1+t2+t3+t4)    M(x,y,z,u,t1) * M(x,y,u,w,t2) 

* (4M(x,u,z,w,t3) * M(u,y,z,w,t4) 
 

Definition: Let ( X, M, *) be a fuzzy 3 – metric space. A 
sequence {xn} in fuzzy 3 – metric space X is said to be 
convergent to a point x  X, 

 for all a, b  X and t > 0. 
 

Definition: Let (X, M, *) be a fuzzy 3 – metric space. A 
sequence {xn} in fuzzy 3 – metric space X is said to be 
Cauchy sequence if   

for all a, b  X and t, p > 0. 
 

Definition: A fuzzy 3-metric space in which every sequence 
is convergent is said to be complete.  
 

Definition: A function M is continuous in fuzzy 3 – metric 
space if and only if whenever for all    a  X and t > 0. Xn  
x, yn  y, then   

 for all a, 
b  X and t  > 0. 
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Definition: Two mappings A and S on fuzzy 3 – metric space 
X are weakly commuting if and only if M(ASu, SAu, a, b, t) ≥ 
M(Au, Su, a, t),  u, a, b  X and t > 0. 
Definition: Self mappings A and B of 3 – metric space (X, M, 
*) is said to be compatible, if   

 for all a, b  X 
and t  > 0, whenever {xn} is a sequence in X such that 

  for some z  X. 
 

Definition:  Two self mappings A and S of a fuzzy metric 
space (X, M, ) are said to  be weakly compatible if, they 
commute at coincidence points. That is, Ax = Sx implies that 
ASx = SAx for all x in X. It is important to note that 
compatible mappings in a metric space are weakly compatible 
but weakly compatible mappings need not be compatible [24].  
 

Definition: Two self mappings A and S of a fuzzy metric 
space (X, M,  ) are said to be semi-compatible if limn∞ 
M(ASxn, Sx,a, b,  t) = 1 whenever {xn} is a sequence such 
that, limn ∞ Axn = limn∞Sxn =  p, for some p in X. 
 

Definition:  Two self mappings A and S of a fuzzy metric 
space (X, M, *) are said to be reciprocally continuous if 
limn∞ M(ASxn, Ax,a,b, t) = 1  and limn∞M(SAxn, Sx,a,b, t) 
= 1 whenever {xn} is a sequence such that limn∞ Axn = 
limn∞  Sxn  = p, for some p in X.  
 

Lemma  
 

Lemma: Let ( X,M,*) be a fuzzy metric space. If there exists 
k  (0,1) such that  
 

M(x,y, a,b,kt) ≥ M(x,y,a,b,t), then x = y. 
 

Lemma: Let A and S be two self mappings on a fuzzy metric 
space (X, M, *). If the pair (A, S) is reciprocally continuous, 
then (A, S) is semi compatible if and only if (A, S) is 
compatible. 
 

Main Result 
  

Theorem: Let (X,M,*) be a complete fuzzy 3-metric space 
and let A,B,S and T be self mappings of X satisfying 
(4.1.1)  AX  TX, BX  SX. 
 

(4.1.2) M(Ax, By,a, b, t) ≥ r[min{M(Ax, Sx,a,b,t), M(By, 
Ty,a, b, t), M(Sx, Ty,a, b, t),  
 

M(Ax, Ty,a, b, α t), M(Sx, By, (2 − α)t)}   
 

where r : [0,1] [0,1] is a continuous function such that r(t) > 
t, for each 0 ≤ t ≤ 1 and r(t) = 1 for   t =1and for all x, y X,  
α(0, 2)and t>0. If (A, S) or (B, T) is semi-compatible pair of 
reciprocally continuous mappings with respectively (B,T) or 
(A,s) as weakly compatible mappings, then  A, B, S and T 
have a unique common fixed point in X. 
 

Proof:  Let x0 X be an arbitrary point. Then since AX  TX, 
BX  SX, there exists  x1, x2  X, such that  Ax0 = Tx1 and 
Bx1 = Sx2. Inductively, we construct the sequences {yn} and 
{xn} in X such that  y2n = Ax2n = Tx2n+1 and y2n+1 = Bx2n+1 = 
Sx2n+2, for n = 0, 1, 2, ....  
 

Now  we put α = 1-q with q  (0,1) in (4.1.2), we get    
M(y2n, y2n+1,a, b, t)  = M (Ax2n, Bx2n+1, a, b, t)  
≥ r(min{M(Sx2n,Tx2n+1,a,b, t), M(Bx2n+1, Tx2n+1,a, b, t), 
M(Sx2n, Tx2n+1,a, b, t),  
 

M(Ax2n, Tx2n+1, a, b.  (1 − q)t), M(Sx2n, Bx2n+1,a, b, (1 + 
q)t)}). 
 

That is, M(y2n, y2n+1,a, b, t) ≥ r(min{M(y2n−1, y2n,a, b, t), 
M(y2n, y2n+1,a, b, t), M(y2n−1, y2n,a, b, t),  
 

M(y2n, y2n+1,a, b, t), M(y2n−1, y2n+1,a, b, (1 + q)t)})  
 

≥ r(min{M(y2n−1, y2n,a, b, t), M(y2n, y2n+1, a ,b, t), M(y2n−1, 
y2n,a , b, t),  
 

M(y2n−1, y2n+1,a, b, qt)})  
   

≥ M(y2n−1, y2n,a, b,  t)  * M(y2n, y2n+1,a, b, t)  M(y2n−1, y2n,a, 
b,qt)    
 

Since t-norm * is continuous, letting q  1, we have  
 

M(y2n, y2n+1,a, b, t) ≥ r(min{M(y2n−1, y2n,a,b, t), M(y2n, y2n+1,a, 
b, t), M(y2n, y2n+1,a,b, t)}  
 

≥ r(min{M(y2n−1, y2n,a,b, t), M(y2n, y2n+1,a,b, t)}). 
 It follows that, M(y2n, y2n+1,a,b, t) > M(y2n−1, y2n,a, b, t), since 
r(t) > t for each 0 < t < 1.  
 

Similarly, M(y2n+1, y2n+2,a,b, t) > M(y2n, y2n+1,a,b, t).  
 

Therefore, in general, we have M(yn, yn+1,a, b, t) ≥ r(M(yn−1, 
yn,a,b, t)) > M(yn−1, yn, a, b, t) 
 

Therefore, {M(yn, yn+1,a,b, t)} is an increasing sequence of 
positive real numbers in [0, 1] and tends to a limit , say   ≤ 1. 
We claim that  = 1. We have   < 1, then M(yn, yn+1,a,b, t) ≥ 
r(M(yn−1, yn,a, b, t)). 
 

So on letting n  ∞, we get limn∞M(yn, yn+1,a,b, t))) ≥ 
r(limn∞M(yn, yn+1,a,b,t) 
 

That is,  ≥ r() > , a contradiction. Thus, we have  = 1.  
Now, for ant positive integer p, such that  
 

M(yn, yn+p,a,b,t)  ≥ M(yn, yn+1,a,b, t) M(yn+1, yn+2,a,b, t/p) 
... M(yn+p−1, yn+p,a,b, t/p). 
 

Latting n ∞, we get limn∞  M(yn, yn+p,a, b, t) ≥ 1*1*1*....1 
= 1 
 

Thus we have limn∞ M(yn, yn+p, a, b,t) = 1. Hence, {yn} is a 
Cauchy sequence in X. Since X is complete metric space, so 
the sequence {yn} converges to a point u (say) in X and 
consequently, the subsequences {Ax2n}, {Sx2n}, {Tx2n+1} and 
{Bx2n+1} also converges to u. 
 

We first consider the case when (A, S) are reciprocally 
continuous semi-compatible maps and (B, T) is weakly 
compatible. Since A and S are reciprocally continuous semi-
compatible mappings, so we have ASx2n  Au, SAx2n  Su 
and M(ASx2n, Su, a, b, t) = 1. Therefore, we get Au = Su.    
We claim that Au = u. For this, suppose that Au  u. 
 

Then, setting x = u and y = x2n+1 in contractive condition (ii) 
with α = 1, we get  
 

M(Au, Bx2n+1, a, b, t) ≥ r(min{M(Au, Su, a, b,  t), M(Bx2n+1, 
Tx2n+1, a, b, t), M(Su, Tx2n+1, a, b,  t),  
 

M(Au, Tx2n+1, a, b, t), M(Su, Bx2n+1, a, b,  t)}). 
Letting n  ∞,  we get M(Au, u, t) ≥ r(M(Au, u, t)) > M(Au, 
u, t), which implies that u = Au.  
 

Thus, we have u = Au = Su. Since AX  TX,  so there exists 
v in X such that u = Au = Tv. 
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Therefore, setting x = x2n and y = v in contractive condition 
(4.1.2) with α = 1, we get  
M(Ax2n, Bv,a, b,  t) ≥ r(min{M(Ax2n, Sx2n,a, b,  t), M(Bv, 
Tv,a, b,  t), M(Sx2n, Tv, a, b, t),  
 

M(Ax2n, Tv, a, B, t), M(Sx2n, Bv, a, b,  t)}).  
Letting n  ∞, we get M(Au, Bv, a, b,  t) ≥ r(M(Au, Bv,a, b, t)) 
> M(Au, Bv,a, b, t), which implies that u = Bv. Thus, we have 
u = Bv = Tv. Therefore, we get u = Au = Su = Bv = Tv. 
 

Now, since u = Bv = Tv, so by the weak compatibility of (B, 
T), it follows that BTv = TBv and so we get Bu = BTv = TBv 
= Tu. Thus, from the contractive condition (4.1.2) with α = 1, 
we have  
 

M(Au, Bu, a, b, t) ≥ r(min{M(Au, Su, a, b, t), M(Bu, Tu, a, b, 
t), M(Su, Tu, a, b, t),  
 

M(Au, Tu, a, b, t), M(Su, Bu, a, b, t)}), 
 that is, M(u, Bu, a, b,  t) > M(u, Bu, a, b, t), which is a 
contradiction. This implies that u = Bu.  
 

Similarly, using condition (4.1.2) with α = 1, one can show 
that Au = u. Therefore, we have u = Au = Bu = Tu = Su. 
Hence, the point u is a common fixed point of A, B, S and T.  
Again, we consider the case when (B, T) are reciprocally 
continuous semi-compatible maps and (A, S) is weakly 
compatible Since B and T are reciprocally continuous semi-
compatible mappings, so  we have BTx2n  Bu, Tx2n     Tu  
We claim that Bu = u. For this, suppose that Bu  u.  Then, 
setting x = x2n and y = u in contractive condition (4.1.2) with 
α = 1, we get 
 

M(Ax2n, Bu, a, b,  t) ≥ r(min{M(Ax2n, Sx2n,a, b, t), M(Bu, Tu, 
a, b,  t), M(Sx2n, Tu,a, b, t),  
 

M(Ax2n, Tu,a,b,  t), M(Sx2n, Bu, a, b,t)}). 
 Letting n  ∞, we get M(u, Bu, a, b,  t) ≥ r(M(u, Bu, a, b,  t)) 
> M(u, Bu, a, b, t), which implies that u = Bu.  
Thus, we have u = Bu = Tu. Since BX  SX, so there exists w 
in X such that u = Bu = Sw.  
 

Therefore, setting x = w and y = x2n+1 in contractive condition 
(4.1.2) with α = 1, we get 
 

M(Aw, Bx2n+1,a, b, t) ≥ r(min{M(Aw, Sw, a, b,  t), M(Bx2n+1, 
Tx2n+1,a, b, t), M(Sw, Tx2n+1,a, b, t),  
 

M(Aw, Tx2n+1, a, b, t), M(Sw, Bx2n+1,a, b, t)}). 
Letting n  ∞, we get M(Aw, Bu, a, b, t) ≥ r(M(Aw, Bu, a, b, 
t)) > M(Aw, Bu, a, b, t), which implies that u = Aw. Thus, we 
have u = Aw = Sw. Therefore, we have u = Aw = Sw = Bu = 
Tu. 
  

Now, since u = Aw = Sw, so by the weak compatibility of (A, 
S), it follows that ASw = SAw and so we get Au = ASw = 
SAw = Su. Thus, from the contractive condition (4.1.2) with α 
= 1, we have  
M(Au, Bu, a, b, t) ≥ r(min{M(Au, Su, a, b, t), M(Bu, Tu, a, b, 
t), M(Su, Tu, a, b, t),  
 

M(Au, Tu, a, b, t), M(Su, Bu, a ,b,  t)}),  
that is, M(Au, u, a, b,  t) ≥ r(M(Au, u, a, b,  t)) > M(Au, u, a, 
b, t), which is a contradiction. 
 

This implies that Au = u. Similarly, using (4.1.2) with α = 1, 
one can show that Su = u. Therefore, we have u = Au = Bu = 
Tu = Su. Hence, the point u is a common fixed point of A, B, 
S and T. 
 

Uniqueness 
 

The uniqueness of a common fixed point of the mappings A, 
B, S and T be easily verified by using (4.1.2). In fact, if u0 be 
another fixed point for mappings A, B, S and T. Then, for α = 
1, we have  
M(u, u0, a, b, t) = M(Au, Bu0,a, b, t) ≥ r(min{M(Au, Su, a ,b,  
t), M(Bu0, Tu0, a, b, t), 
 

M(Su, Tu0, a, b,t), M(Au, Tu0, a, b, t),  
M(Su,Bu0, a, b, t)}), ≥ r(M(u, u0, a, b, t)) > M(u, u0, a. B. t), 
and hence, we get u = u0.  
This completes the proof of the theorem.  
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