International Journal of Current Advanced Research

ISSN: O: 2319-6475, ISSN: P: 2319 - 6505, Impact Factor: SJIF: 5.995 Available Online at www.journalijcar.org Volume 6; Issue 9; September 2017; Page No. 6175-6180 DOI: http://dx.doi.org/10.24327/ijcar.2017.6180.0888

STRUCTURAL AND LUMINESCENCE PROPERTIES OF Sm³⁺/Eu³⁺CO-DOPED 2CaO-B₂O₃-P₂O₅ PHOSPHORS: ENERGY TRANSFER MECHANISM AND ENHANCEMENT OF RED LUMINESCENCE BY TEMPERATURE

Reddy Prasad V., Damodaraiah S and Ratnakaram Y.C*

Sri Venkateswara University, Tirupati, India

ABSTRACT ARTICLE INFO

Article History:

Received 19th June, 2017 Received in revised form 3rd July, 2017 Accepted 18th August, 2017 Published online 28th September, 2017

Key words:

Luminescence; ³¹P solid state NMR; monophosphate complexes; energy transfer; red color emission.

Sm3+/Eu3+ co-doped calcium borophosphate phosphors were synthesized by solid state reaction method. 2CaO-B₂O₃-P₂O₅: Sm³⁺/Eu³⁺ co-doped phosphors were characterized by XRD, SEM, DRS, FT-IR, ³¹P solid state NMR, excitation, photoluminescence (PL) and decay profiles. XRD profiles showed that the prepared phosphors exhibit a hexagonal phase in crystal structure and SEM results showed that the particles are more irregular morphologies. FT-IR spectrum shows prominent band at 1029 cm⁻¹ which is due to the asymmetric stretching vibrations of $[PO_4]^3$ tetrahedrons. From ³¹P NMR spectra of Sm^{3+}/Eu^{3+} co-doped 2CaO-B₂O₃-P₂O₅ (CBP) phosphors, it was observed that the chemical shifts are located in the positive frequency region indicating the presence of monophosphate complexes Q⁰-(PO₄³⁻). Photoluminescence spectra of Sm³⁺/Eu³⁺ co-doped CBP phosphors show increase in emission intensity of Eu^{3+} ion due to co-doping with Sm^{3+} ions due to energy transfer process. The energy transfer mechanism between Sm^{3+} and Eu^{3+} ions has been clearly explained. The energy transfer process has been evidenced by lifetime decay profiles. From CIE chromaticity diagram, pure red color emission was observed in 0.6 Sm³⁺/0.6 Eu³⁺ co-doped CBP phosphors. These results suggest that the prepared phosphors are potential for red luminescent optical materials.

Copyright©2017 Reddy Prasad V., Damodaraiah S and Ratnakaram Y.C. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Currently, great interest in phosphors has resulted in rapid developments in the solid state lighting sources, including LED display and illumination technologies. The applications of white light from combined blue emission of blue chip and yellow light emitted by YAG:Ce³⁺ have been limited in many fields due to the lack of red light harmonic [1, 2]. Thus, the lack of red phosphors for long term constitutes a serious obstacle to the development of advanced LED-based technologies. Therefore, one way of developing practical white LEDs is to search for both high efficiency and quality red phosphors to improve color rendering [3]. A series of red phosphors have been investigated using the compounds such as nitrides, silicates, sulfides, and molybdates et al. [4, 5].

Rare earth (RE) ion doped phosphors have considerable attention for diverse applications such as solid state lasers, waveguides and optical fibers. RE ions have 4f-4f and 4f-5d electronic transitions, which exhibit sharp emission lines from the ultraviolet (UV) to the infrared (NIR) regions [6]. Among RE ions, Eu³⁺ has good energy level structure and high luminescence efficiency of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition, which is very sensitive to changes in chemical surroundings of the Eu^{3+} ion. On the other hand for Sm^{3+} ion, the ionic radius is nearly

*Corresponding author: Ratnakaram Y.C Sri Venkateswara University, Tirupati, India same compared to Eu³⁺, gives a red color emission, sometimes shifted to longer wavelengths compared to Eu³ [7]. It's emitting level; ${}^{4}G_{5/2}$ gives relatively high quantum efficiency and also shows different emission quenching [8].

The energy transfer between two RE ions co-doped in phosphors has been studied in many systems. The reason is that the sensitized luminescence is not only of interest for applications but also for understanding the basic mechanisms involved [9-11]. In Sm³⁺ and Eu³⁺ co-doped phosphors, the excitation wavelength range of Eu³⁺ emission is broadened owing to the energy transfer from Sm³⁺ to Eu³⁺ [12]. Many researchers have discussed the phenomena of radiative and non-radiative transitions in $\rm Sm^{3+}/Eu^{3+}$ co-doped phosphors and succeeded in realizing energy transfer in co-doped phosphors. Matwa et al. studied photoluminescence and energy transfer of Eu³⁺ and Sm³⁺ single-doped and co-doped BaB₈O₁₃ phosphors [13]. Hachani et al. discussed energy transfer between Sm³⁺ and Eu³⁺ in YPO₄, LaP₅O₁₄ and LaP₃O₉ phosphates: potential quantum cutters for red emitting phosphors [14]. Wembo et al. studied luminescent properties and energy transfer mechanism of NaGd(MoO₄)₂:Sm³⁺/ Eu³⁺ phosphors [15]. Fengwen et al. reported luminescence and red long after glow investigation of Eu³⁺/Sm³⁺ co-doped CaWO₄ phosphor [16].

CBP phosphors show significance for white LED (WLED) applications and some research work on Sm^{3+} and Eu^{3+} singly

Structural and Luminescence Properties of Sm3+/Eu3+ Co-Doped 2cao-B2o3-P2o5 Phosphors: Energy Transfer Mechanism and Enhancement of Red Luminescence by Temperature

doped phosphors was done recently [17]. In the present paper, an attempt is made to report the influence of different concentrations of Sm^{3+} ion on the Eu³⁺ ion photoluminescence in Sm^{3+} / Eu³⁺ co-doped CBP phosphors. Changes in spectroscopic properties as a function of concentration were observed and discussed in terms of local environment of Sm^{3+} and Eu³⁺ ions. In the present work, the structural, thermal and luminescence properties of new red emitting CBP phosphor co-doped with $\text{Sm}^{3+}/\text{Eu}^{3+}$ ions was reported. Eu³⁺ has been taken as acceptor ion and Sm^{3+} as donor ion. Surprisingly, four common excitation bands are observed in Eu³⁺ and Sm³⁺ consisting phosphors, with these excitations the emission performances have been observed and the energy transfer phenomenon has been explained by increasing the donor (Sm³⁺) concentration. The energy transfer mechanism has clearly explained between Sm³⁺ and Eu³⁺ ions with lifetime decay profiles.

Experimental

Using solid sate reaction method, $\text{Sm}^{3+}/\text{Eu}^{3+}$ co-doped 2CaO-B₂O₃-P₂O₅ (CBP) phosphors ((1.4-*x*)CaO-B₂O₃-P2O5*x*Sm₂O₃-0.6 Eu₂O₃ (where *x*=0.2, 0.4, 0.6, 0.8 and 1.0 mol%)) were prepared using raw materials, CaCO₃, H₃BO₃, NH₄H₂PO₄, Sm₂O₃ and Eu₂O₃ with 99.9 % purity. The batch of 10 gm was weighed as per the composition given above. These materials were taken in an agate mortar and after ground they are preheated at 650 °C for 2 h in porcelain crucible and then cooled down to room temperature. The preheated batches were again heated at 950 °C for 4 h in an electrical furnace. The obtained phosphor powders were pulverized for further characterization and analysis.

Phase purity of Sm³⁺/Eu³⁺ co-doped CBP phosphors were characterized by X-ray diffraction (XRD) with Philips PW 1050 instrument, using Ni filtered Cu tube with Kα radiation. SEM images of $\text{Sm}^{3+}/\text{Eu}^{3+}$ co-doped phosphors were taken by Caral Zeiss EVO-MA15 scanning electron microscope. The UV-visible diffuse reflectance spectra (DRS) were measured for undoped and co-doped Sm³⁺/Eu³⁺ phosphors using JASCO V570 UV-Vis-NIR spectrometer. The thermal decomposition of CBP phosphors was performed by thermo gravimetry differential scanning calorimetry (TG-DSC; Model NETZSCH STA 449C, Selb, Germany) in air atmosphere with a heating rate 10 °C/min. The fourier transform infrared spectra were recorded at room temperature with 4 cm⁻¹ spectral resolution between 400 and 4000 cm⁻¹ by a BRUKER FTIR spectrometer. Solid state ³¹P NMR spectra were obtained at 400 MHz using a JOEL ECX400 DELTA2 NMR spectrometer with a 4 mm probe. Excitation, photoluminescence, decay lifetimes and quantum yield were acquired using FLS-920 Edinburg-fluorimeter (Horiba FL3-22iHR320).

RESULTS AND DISCURSION

X-ray diffraction spectra (XRD)

 $\text{Sm}^{3+}/\text{Eu}^{3+}$ co-doped XRD patterns of CBP phosphors were measured in the range, 10°-80° and were shown in Fig. 1. By comparing the obtained XRD patterns of present co-doped phosphors with host pattern, all samples showed the same diffraction peaks reported in JCPDS card No: 0-018-0283 and are in good agreement. It was also found that, with the increase of doping concentrations, showed same JCPDS structure, thus implying the formation of pure crystalline phase of CBP: $\text{Sm}^{3+}/\text{Eu}^{3+}$ co-doped phosphors. Generally, borophosphate crystal contains CaO₉, BO₄ and PO₄ polyhedron, generating three-dimensional composite frame work with large tunnels inside [18]. In CBP crystal, insertion of $\text{Sm}^{3+}/\text{Eu}^{3+}$ took in the nine-fold coordinate calcium site due to similar ionic radii of Sm^{3+} , Eu^{3+} and Ca^{2+} ions. $\text{Sm}^{3+}/\text{Eu}^{3+}$ ions occupy a site in nine coordinated large polyhedron occurring in tortuous vertical columns formed by BO₄ and PO₄ tetrahedra [19]. A well crystallized hexagonal symmetry with group space P6cc (184) was observed from figure 1.

SEM morphology

SEM images are shown in Fig. 2 (a-e) for different concentrations of $\text{Sm}^{3+}/\text{Eu}^{3+}$ co-doped CBP phosphors (a:0.2Sm/0.6Eu,b:0.4Sm/0.6Eu, c:0.6Sm/0.6Eu, d:0.8Sm/0.6Eu, e:1.0Sm/0.6Eu). From the figure, it was found that the particle size has increased as the Sm³⁺ concentration increased from 0.2 to 1.0 mol% with 0.6 mol% of Eu³⁺, and the particles

Fig 2 SEM images of Sm³⁺/Eu³⁺ co-doped 2CaO-B₂O₃-P₂O₅ phosphors.

have more irregular morphologies due to $\text{Sm}^{3+}/\text{Eu}^{3+}$ incorporation. In the present work, the sizes of the particles are between few microns and several tens of microns and they are suitable for use in the WLEDs applications.

Diffuse reflection spectra (DRS)

The diffuse reflection spectra (DRS) of $\text{Sm}^{3+}/\text{Eu}^{3+}$ co-doped and undoped CBP phosphors in the visible range are shown in Fig. 3. From the reflection spectra it was observed that undoped and co-doped spectra have similar in shape indicating that the effect of co-doping of $\text{Sm}^{3+}/\text{Eu}^{3+}$ ions on the reflection spectra is negligible. The band gaps were obtained from the diffuse reflection spectra of both the phosphors using the formula given in ref. [20] and these values are 4.72 eV and 4.78 eV for undoped and $0.6\text{Sm}^{3+}/0.6\text{Eu}^{3+}$ co-doped phosphors, respectively.

Fig 3 DRS spectra of 2CaO-B₂O₃-P₂O₅ and Sm³⁺/Eu³⁺ co-doped 2CaO-B₂O₃-P₂O₅ phosphors.

FT-IR spectra

Fourier transform infrared spectrum of present phosphor was measured in the range 500-3800 cm⁻¹ and shown in Fig. 4.

From the figure, it is observed that the spectrum consists of eight bands centered at ~570, ~1029, ~1511, ~1702, ~2337, ~3119, ~3241 and ~3601 cm⁻¹. The bands at 570, 1029 and 1511 cm⁻¹ are attributed to the $(PO_4)^{-3}$ vibrational bands [21] and correspond to asymmetric stretching vibrations. The band

at 570 cm⁻¹ is due to O-P-O asymmetric bending vibrations, while the band at 1029 cm⁻¹ is due to O-P-O asymmetric stretching vibrations of $[PO_4]^{3-}$ tetrahedrons [21]. The band at 1511 cm⁻¹ is attributed to the asymmetric stretching of C-O bonds [22]. The bands observed between the energy range 1702-3601 cm⁻¹ are assigned to the H-O-H bending vibrational mode of the H₂O molecule.

³¹P solid state NMR spectra:

³¹P solid state NMR is one of the important tool in characterizing the structures of phosphate-type phosphors due to the chemical shifts being sensitive to the phosphorus environment. The phosphate bonding is explained through Q^n species, where the superscript *n* refers to the number of bridging oxygens per tetrahedron [23]. ³¹P NMR spectra of CBP and CBP:0.6Sm³⁺/0.6Eu³⁺ phosphors are shown in Fig. 5. In the present work, the obtained spectra (from Fig. 5) are a single, symmetric Gaussian peak and position of line for CBP and CBP:0.6Sm³⁺/0.6Eu³⁺ phosphors are at +3.9 ppm. This value indicates the presence of mono-phosphate complexes Q^0 -(PO₄³⁻) (phosphate tetrahedral with zero bridging oxygens) in both these phosphors network [24].

Fig 5 ³¹P NMR spectra of $2CaO-B_2O_3-P_2O_5$ and Sm^{3+}/Eu^{3+} co-doped $2CaO-B_2O_3-P_2O_5$ phosphors.

Photoluminescence spectra

Fig. 6 shows the comparison of excitation spectra of Eu^{3+} singly doped [17] and Sm^{3+}/Eu^{3+} co-doped phosphors monitoring the Eu^{3+} emission wavelength at 613 nm.

Fig 6 Excitation spectra of Eu^{3+} doped and Sm^{3+}/Eu^{3+} co-doped 2CaO-B₂O₃-P₂O₅ phosphors.

The excitation spectra of Eu³⁺ doped phosphors display several excitation bands associated with transitions from the ⁷F₀ and ⁷F₁ states to ⁵D₄, ⁵L₇, ⁵L₆, ⁵D₃ and ⁵D₂ states as reported in previous paper [17]. It is observed that the spectrum of co-doped Sm³⁺/Eu³⁺ phosphor also shows the same excitation bands which are observed for Eu³⁺ doped phosphors.

The photoluminescence spectra of $\text{Sm}^{3+}/\text{Eu}^{3+}$ co-doped CBP phosphors excited with 393 nm for different Sm^{3+} concentrations are shown in Fig. 7.

Fig 7 Emission spectra of Sm^{3+}/Eu^{3+} co-doped 2CaO-B₂O₃-P₂O₅ phosphors for different concentrations.

This emission spectra consist five emission bands at 578, 592, 613, 650 and 698 nm, related to the ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J= 0, 1, 2, 3 and 4) transitions respectively. From the figure, it is observed that the intensity of emission peaks of Eu³⁺ (613 nm) increased with Sm³⁺ concentration upto 0.6 mol% and then decreased with increasing Sm³⁺ concentration. The optimum concentration of Sm³⁺ ion in Sm³⁺/Eu³⁺ co-doped CBP phosphor was 0.6 mol% and it can be called concentration effect. In general, the sensitizer (donor) emission intensity decreases and activator emission intensity increases if energy transfer suited from sensitizer to activator (acceptor) in co-doped phosphors [25].

The energy transfer phenomenon from Sm^{3+} to Eu^{3+} can be explained using the energy level diagram as shown in Fig. 8.

Fig 8 Partial energy level scheme of energy transfer from Sm^{3+} to Eu^{3+} in 2CaO-B₂O₃-P₂O₅ phosphors.

From the figure, under the excitation of 401 nm, an electron in the ground state, ${}^{6}H_{5/2}$ of Sm³⁺ are stimulated to the excited

state ${}^6P_{3/2}$ and then relaxes finally to the ${}^4G_{5/2}$ level nonradiatively. The energy in the ${}^{4}G_{5/2}$ level of Sm³⁺ is transferred to the ⁵D₀ level of Eu³⁺ due to resonance (the ⁴G_{5/2} energy level of Sm^{3+} is approximately 600 cm⁻¹ higher than the ${}^{5}\text{D}_{0}$ level of Eu³⁺) between the two energy levels. The energy transfer from Sm³⁺ to Eu³⁺ is almost irreversible, because the ${}^{4}G_{5/2}$ level in Sm³⁺ is higher than the ${}^{5}D_{0}$ level in Eu³⁺, and the probability of emitting phonons in Sm³⁺: ${}^{4}G_{5/2} \rightarrow Eu^{3+}$.⁵D₀ is higher than that of capturing phonons for $Eu^{3+}: {}^{5}D_{0} \rightarrow Sm^{3+}: {}^{4}G_{5/2}$ process. The resonance energy transfer increased the population of Eu^{3+} : ⁵D₀ level and it was due to the co-doping with Sm³⁺ caused the sensitization of Eu³⁺ emission under certain excitation conditions and lead to the expansion of the exciting range in Eu³⁺ luminescence.

Effect of thermal treatment on luminescence spectra

 Sm^{3+}/Eu^{3+} co-doped prsent phosphor at optimum concentration are treated with different temperatures in the range 900 °C - 1100 °C with the step size of 50 °C to study the effect of temperature on Eu³⁺ emission intensity. The measured emission spectra are shown in Fig. 9. From the figure it was observed that the Eu³⁺ emission intensity increased from 900 °C to 950 °C then decreased upto 1050 °C and further increased at 1100 °C. The Eu³⁺ emission intensity was maximum at 1100 °C and minimum at 900 °C. The splitting of magnetic dipole (${}^{5}D_{0} \rightarrow {}^{7}F_{1}$, 592 nm) and electric dipole (${}^{5}D_{0} \rightarrow {}^{7}F_{4}$, 698 nm) transitions is observed, for the 950 °C and 1100 °C temperatures. The splitting of these transitions might be due to change in the chemical environment surrounding and local environment of Eu³⁺ ions [26].

Fig 9 Emission spectra of 0.6Sm³⁺/0.6Eu³⁺ co-doped 2CaO-B₂O₃-P₂O₅ phosphors at different temperatures.

Fluorescence decay

The fluorescence lifetime decay profiles of $\text{Sm}^{3+}/\text{Eu}^{3+}$ codoped CBP phosphor were measured with excitation wavelength 393 nm and emission wavelength 613 nm and are shown in Fig. 10. Form the figure, it is noticed that the decay profiles exhibit non-exponential nature. The lifetimes (τ_{meas}) of the excited state, 5D_0 of Eu³⁺ are obtained in this Sm³⁺/Eu³⁺ co-doped CBP phosphors and are presented in Table 1. From the table, it is observed that the lifetime is higher (2.50 ms) for 0.6Sm³⁺/0.6Eu³⁺ co-doped phosphor than the remaining phosphors and also higher than Eu³⁺ singly doped CBP phosphor (2.30 ms) [17] indicating the energy transfer between the acceptor and donor ions. In the present work, the concentration of Sm^{3+} (donor) ions per Eu³⁺ (acceptor) ion was found more, therefore the average distance between the Eu and Sm ions has decreased.

 $\begin{array}{l} \textbf{Table 1} \mbox{ Measured lifetimes } (\tau_{cal},\mbox{ ms}),\mbox{ absolute quantum } efficiencies (Q_E,\mbox{ } \%) \mbox{ and color coordinates of } Sm^{3+}/\mbox{ Eu}^{3+} \mbox{ co-doped } 2CaO{-}B_2O_3{-}P_2O_5\mbox{ phosphor.} \end{array}$

Formula			Color	
	τ_{meas}	0	coordinates	
		QE	Х	у
$2Ca_{0.9}O-B_2O_3-P_2O_5:0.2Sm^{3+}/0.6Eu^{3+}$	2.21	97.22	0.59	0.30
2Ca _{0.8} O-B ₂ O ₃ -P ₂ O ₅ :0.4Sm ³⁺ /0.6Eu ³⁺	2.25	75.18	0.62	0.33
$2Ca_{0.7}O-B_2O_3-P_2O_5:0.6Sm^{3+}/0.6Eu^{3+}$	2.50	59.38	0.65	0.32
$2Ca_{0.6}O-B_2O_3-P_2O_5:0.8Sm^{3+}/0.6Eu^{3+}$	2.32	42.50	0.63	0.31
2Ca _{0.5} O-B ₂ O ₃ -P ₂ O ₅ :1.0Sm ³⁺ /0.6Eu ³⁺	2.29	28.02	0.60	0.32

Energy migration took place due to electronic multipolemultipole interactions and as a result, decay profiles exhibited non-exponential nature. The absolute quantum efficiencies (AQE) of $\text{Sm}^{3+}/\text{Eu}^{3+}$ co-doped CBP phosphors were measured under excitation 393 nm with the fluorescence spectrometer using an integrating sphere and the AQE values are presented in Table 1. From the table, it is observed that AQE values have decreased with increasing Sm^{3+} concentration in $\text{Sm}^{3+}/\text{Eu}^{3+}$ co-doped CBP phosphors.

Color chromaticity co-ordinates

The CIE chromaticity diagram of $0.6 \text{Sm}^{3+}/0.6 \text{Eu}^{3+}$ co-doped CBP phosphor under the excitation of 393 nm was shown in Fig. 11.

Fig 11 Color chromaticity diagram of Eu³⁺ doped and Sm³⁺/Eu³⁺ codoped 2CaO-B₂O₃-P₂O₅ phosphors.

The chromaticity coordinates of present phosphor with codoped $\text{Sm}^{3+}/\text{Eu}^{3+}$ ions for different concentrations were calculated and are presented in Table 1. The emitting color of Eu³⁺ (0.6 mol%) singly doped CBP phosphor [17] was in pale red region, and the corresponding color coordinates are 0.62 and 0.33. By doping 0.6Sm^{3+} into the CBP phosphor, color coordinates shifted towards pure red region and the color coordinates was changed to 0.65 and 0.32. Hence, $0.6\text{Sm}^{3+}/0.6\text{Eu}^{3+}$ co-doped CBP phosphor may be used as a potential red emitting material.

CONCLUSIONS

Sm³⁺/Eu³⁺ co-doped calcium borophosphate phosphors were synthesized by solid state reaction method. XRD shows Sm³⁺/Eu³⁺ ions occupy a site in nine coordinated large polyhedron occurring in tortuous vertical columns formed by BO₄ and PO₄ tetrahedra. The SEM images showed the particles were more irregular morphologies due to Sm³⁺/Eu³⁺ incorporation. From the FT-IR spectrum, the prominent band at 1029 cm⁻¹ was due to the asymmetric stretching vibrations of [PO₄]³⁻ tetrahedrons. From ³¹P NMR spectra of Sm³⁺/Eu³⁺ co-doped calcium borophosphate phosphors, the component lines corresponding to the chemical shifts located in the positive frequency region indicated the presence of mono- Q^{0} -(PO₄³⁻). From phosphate complexes the photoluminescence spectra of Sm^{3+}/Eu^{3+} co-doped CBP phosphors, enhancement of emission intensity of Eu³⁺ was observed due to co-doping with Sm³⁺ ions and due to energy transfer process. The energy transfer mechanism, from Sm² to Eu³⁺ was clearly explained. Eu³⁺ ion emission intensities have significantly been enhanced due to sensitizer effect of Sm³⁺ ions in the Sm³⁺/Eu³⁺ co-doped CBP phosphors. This phenomenon was clearly explained by partial energy level diagram. The energy transfer process was also evidenced by lifetime decay profiles. From CIE chromaticity diagram, pure red color emission was observed at 0.6Sm³⁺/0.6Eu³⁺ doped CBP phosphors. These results suggest that the prepared phosphors are the potential red luminescent optical materials.

Acknowledgement

One of the authors V. Reddy Prasad expresses his thanks to University Grants Commission (UGC), New Delhi for the sanction of JRF under Rajiv Gandhi National Fellowship (RGNF). The authors acknowledge MoU-DAE-BRNS Project (No. 2009/34/36/BRNS/3174), Department of Physics, S.V. University, Tirupati, India for extending experimental facility.

References

- Y. Shen, K. Qiu, W. Zhang, Y. Zeng, Ceram. Int, 17 (2017) 30668-30675.
- 2. B. Bondzior, J. Lumin, 173 (2016) 38-43.
- J. Chen, Y. Zhao, Z. Mao, D. Wang, L. Bie, Chem. Phys. Letters, 669 (2017) 171-175.
- 4. K. Park, D. A. Hakeem, *Ceram. Int*, 43 (2016) 4725-4729.
- 5. D. Pengpeng, Ceram. Int, 43 (1) (2017) 1565-1570.
- Z. Fu, L. Ma, S. Sahi, R. Hall, W. Chen, J. Lumin, 143 (2013) 657-662.
- 7. L. Minhong, J. Lumin, 2017, 184, 143-149.
- 8. A.N. Meza-Rocha, A. Speghini, M. Betteinelli, U. Caldino, *J. Lumin*, 167 (2015) 305-310.
- 9. B.C. Joshi, J. Non-Cryst. Solids, 180 (1995) 217-220.

Structural and Luminescence Properties of Sm3+/Eu3+ Co-Doped 2cao-B2o3-P2o5 Phosphors: Energy Transfer Mechanism and Enhancement of Red Luminescence by Temperature

- 10. J. Qiu, M. Shojiya, Y. Kawamoto, K. Kadono, J. Lumin, 86 (2000) 23-31.
- 11. K.S. Lim, P. Babu, S.K. Lee, V.T. Pham, D.S. Hamilton, J. Lumin, 737 (2003) 102–103.
- 12. X. Min, Z. Huang, M. Fang, Y.-G. Liu, C. Tang, X. Wu, *Inorg. Chem*, 2014, 53, 6060-6065.
- A. Mantwa Lephoto, G. Kamohelo, Tshabalala, J. Selepe, Motloung, Iorkyaa Ahemen, M. Odireleng, Ntwaeaborw, Physica B, 2017, https://doi.org/10.1016/j.physb.2017.06.063.
- 14. S. Hachani, B.Moine, A.El-akrmi, M.Ferid, J. Lumin, 130 (2010) 1774-1783.
- Bi. Wenbo, Q. Meng, W. Sun, Ceram. Int, 12 (2016) 14086-14093.
- 16. F. Kang, Y. Hu, H. Wu, Z. Mu, G. Ju, C. Fu, N. Li, J. Lumin, 132 (2012) 887-894.

- 17. V. Reddy Prasad, S. Damodaraiah, S. Babu, Y.C. Ratnakaram, J. Lumin, 187 (2017) 360-367.
- L. Pierron, A. Kahn-Harari, B. Viana, P. Dorenbos, C.W.E. Van Eijk, J. Phys. Chem. Solids, 64 (2013) 1743-1748.
- 19. A.M. Srivastava, J. Lumin, 1998, 78, 239-243.
- 20. Chapter 4.1 of B.Streetman, Solid-State Electronic Devices, 4th Edition, Prentice-Hall, 1995.
- 21. V.N. Rai, B.N. Rajshekhar, S. Kher, S.K. Deb, J. Lumin. 130 (2010) 582-586.
- 22. V.B. Taxak, S. Dayawati, S.P. Khatkar, *Curr. Appl. Phys*, 13 (2013) 594-598.
- 23. R.K. Brow, D.R. Tallant, S.T. Meyers, and C.C. Phifer, *J. Non-Cryst. Solids*, 191 (1995) 45-55.
- 24. M. Szumera, Spectro. Chim. Acta A, 137 (2015) 111-115.
- 25. S. Damodaraiah, V. Reddy Prasad, S. Babu, Y.C. Ratnakaram, *Opt. Mater*, 67 (2017) 14-24.
- 26. K. Binnemans, C. Gorller-Walrand, J. Rare. Earths, 14 (1996) 173-177.

How to cite this article:

Reddy Prasad V., Damodaraiah S and Ratnakaram Y.C (2017) 'Structural and Luminescence Properties of Sm3+/Eu3+ Co-Doped 2cao-B2o3-P2o5 Phosphors: Energy Transfer Mechanism and Enhancement of Red Luminescence by Temperature ', *International Journal of Current Advanced Research*, 06(09), pp. 6175-6180. DOI: http://dx.doi.org/10.24327/ijcar.2017.6180.0888
