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A R T I C L E  I N F O                              A B S T R A C T  
 

 

The Least Median Square and Least Trimmed Square are the most popular methods that 
have a high breakdown point (50%), but when the outliers are clustered, these methods can 
breakdown at lower percentages of outliers. In this paper, the breakdown property of LMS, 
LTS and LTSD are investigated with the presence of large percentage of clustered outliers 
in the data. The concept of symmetry distance (SD) based method is proposed, called the M 
estimator based symmetry distance (MSD). The superiority of the proposed method has 
been demonstrated by considering break down property over the LMS, LTS and LTSD 
methods, when large percentage of clustered outliers and/or a large deviation in the inliers 
population under real and simulating environment. 
 
 
 
 
 
 
 

INTRODUCTION 
 

Regression analysis is a vital statistical tool usually employed 
in computer vision for a huge variety of tasks. The least 
squares method is the traditional and commonly used method 
of computation in regression analysis. It achieves most 
favourable results when the error distribution is Gaussian. 
However, it becomes unreliable if the noise has non-zero 
mean components and/or if there are outliers in the data. The 
outliers may be clusters, large measurement errors, or impulse 
noise corrupting the data. At a transition between two 
homogeneous regions of the image, samples belong to one 
region may turn into outliers for fits to the other region. 
 

The breakdown concept is frequently employed to evaluate a 
regression method. The definition of robustness in this 
perspective often is focused on the view of the breakdown 
point. The breakdown point of regression method is the 
smallest amount of outlier contamination that may strength 
the value of the estimate outside an arbitrary range. 
Breakdown point is one of the most significant qualities of the 
robust estimators. An estimator is said to be more robust if it 
has larger breakdown point. 
 

In this paper the LMS, LTS and LTSD methods are briefly 
discussed in their usual form within the robust regression 
literature. Then the concept of symmetry distance is 
introduced into model fitting and named as the M estimator 
based Symmetry Distance (MSD). The left over part of the 
paper consists of the experimental results which show that the 
performance of MSD in the context of breakdown property is 
 
 

much better than LMS, LTS and LTSD methods; particularly 
when there is a large percentage of clustered outlier and 
standard deviation in the data. 
 

Robust Regression Estimators 
 

Regression analysis is a statistical procedure for studying and 
modelling the relationship between variables. The most 
familiar form of regression analysis is the least square 
method, which achieves optimum results when the data 
includes normally distributed random errors. The general 
form of the linear model is as follows: 
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where, yi is the response variable and ipi xx ,..........1 are the 
explanatory  variables. The error term ei is usually assumed to 
be normally distributed with mean zero and standard 
deviation σ. The ordinary least square (LS) method estimates 

θ̂  by 
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where, residual 
sss

. Even though the least square method has 

a low computational cost and high efficiency, it is 
tremendously sensitive to outliers. In fact, even one single 
outlier can influence the result to a large degree. The Least 
Square method has a breakdown point of 0, because only one 
single extreme outlier is sufficient to compel the Least Square 
method to produce arbitrarily large values. In order to reduce 
the influence of outliers, a number of robust estimators have 
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been developed and the most popular methods are briefly 
furnished as follows.  
 

Rousseeuw (1984) proposed the least median of squares 
estimator (LMS), a simple idea of replacing the sum by a 
median in the least squares. It finds the parameters to be 
estimated by minimizing the median of squared residuals 
corresponding to the data points. The least median of squares 
estimator can be written as 
 

 2
ˆ

min iiθ
rmed                                                                        (3) 

 

The LMS method has excellent global robustness and high 
breakdown point (i.e., 50%). However, the relative efficiency 
of the LMS method is poor when Gaussian noise present in 
the data.  
 

Rousseeuw (1984) proposed the Least Trimmed Squares 
(LTS) estimator. It mates a complement way for robust 
estimators of minimizing the objective function is  
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where h is the number of data points, residuals are included in 
the sum. This will find a robust estimate by identifying the (n-
h) points which hold large residuals as outliers and discarding 
trimmers of data set. The trimmed data set results in least 
square estimates which can be visualized as h as close as to 
the number of good points in the data set. It is less sensitive to 
local effects than LMS, it has more local stability and it has 
better statistical efficiency than LMS. 
 

Symmetry Distance 
 

Symmetry is considered a pre-attentive characteristic that 
enhances recognition and reconstruction of shapes and 
objects. Symmetry exists in many man-made and natural 
objects. Symmetry Distance (Zabrodsky et al. (1995)) as a 
quantifier of the minimum effort required turning a given 
shape into a symmetric shape. This effort is measured by the 
mean of the square distances each point is moved from its 
location in the original shape to its location in the symmetric 
shape. Symmetry distance is to find the orientation of 
symmetric objects from their images and to find locally 
symmetric regions in images. Given n points Nixi ,...1,   
and a reference vector C, the point symmetry distance (Su and 
Chou (2001)) between a point jx  and C is defined as follows: 
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when )2( ji xCx   exists, 0),( Cxd js . 
However, a point could be exploited several times as the 
balancing point with regard to the centre. Thus the notion of 
symmetry is not properly entranced. In order to forefend a 
point being exploited as a symmetric point extent one time by 
other points, the refinement of the point symmetry distance 
between a point jx  and C is defined as follows:   
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where   is a set of points that have been used as symmetric 
point. The symmetry distance is written as 
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If the SD of a perceptual structure is equal to zero, it is 
perfectly symmetric; if the SD of a perceptual structure is 
very big, it has little symmetry. 
 

Least Trimmed Symmetry Distance (LTSD) 
 

Wang and Sutter (2002) proposed Least Trimmed Symmetry 
Distance by combining the LTS procedure with symmetric 
distance measure. Mathematically, LTSD estimate can be 
written as 
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Only h data points with the smallest sorted residuals are used 
to calculate the symmetry distance. The estimated parameters 
correspond to the least symmetry distance. In LTSD the 
concept of trimming induces loss of information.  
 

M- Estimator based Symmetry Distance (MSD) 
 

The concept of symmetry is applied with M-estimator to 
overcome the limitation of LTSD. The proposed method is 
namely M-estimator based Symmetry Distance (MSD) and 
mathematically defined by 
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The computational steps of MSD are as follows: 
 

Step 1: Randomly select a subset which contains p+1 data 
points. 

Step 2: Compute   point symmetry. 
Step 3: Compute symmetry distance iSD   based on point 

symmetry. 
Step 4: Calculate the weight function  iw  by M estimator. 

Step 5: Calculate the ̂  based on n observations. 
Step 6: Repeat the above procedure for all possible subsets 

and compute̂ . 

Step 7: Finally, output ̂  with the lowest SD 
 

Experimental Results 
 

This section provides the experimental results in the context 
of fitting models with symmetrical structures using the 
proposed method MSD along with the other methods which 
were discussed in the previous sections. Fitting a model is one 
of the major tasks of computer vision. Circle fitting is very 
popular topics that have symmetry characteristic. First we 
considered a simulating environment and then a real image. 
The first experiment provides the results of (i) LMS and LTS 
and (ii) MSD and LTSD fits in the context of circle fitting 
along with breakdown plots. The superiority of the proposed 
MSD method over LMS, LTS and LTSD has been studied 
and the results are provided in the second experiment. The 
breakdown plots of MSD with other methods are also 
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presented under varying standard deviations. The experiment 
three provided the results based on real image.  
 

Experiment 1 
 

In circle fitting, the centre point at  00 , yx with a radius r in 

 yx,  co-ordinates has the following form      
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It can be written as 
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The centre and radius is given by  
 

 
a
c

a
b

r
a

b
a
bzzz 






  2

2
21

2,1 4
;

2
,

2
                 (12) 

 

The 500 data points have been generated with radius10 and 
(0,0) as the centre point. Considering the experiment without 
outliers, the obtained results under the methods LMS and LTS 
are is shown in figure 1(a). In the case of contamination, 
specifically, in the presence of clustered outlier, the data were 
contaminated within the region of radius 15 and the fitted 
models are shown in figure 1(b). It is noted that, the LMS 
method gets affected even, less than 20% contamination 
whereas the LTS method can tolerate more than 20% of 
clustered outliers, hence the fitted model with 30% 
contamination is displayed.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now, the robustness property, breakdown is considered under 
various levels of contaminations. The estimated radius by 
varying the standard deviation of the inliers under LMS and 

LTS and thus obtained breakdown plots are displayed in the 
figure 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From figure 2(a), it can be seen that when the standard 
deviation of inliers is not more than 1.0, LMS can estimate 
the right result under high percentage of outliers (less than 
30%). However, when the standard deviation of inliers is 
more than 1.0, LMS does not produce the right result even 
when the percentage of outliers is less than 20%. From figure 
2(b), it noted that when the standard variance of inliers is 0.5 
to 1.0, the LTS can estimate the results even under less than 
43% clustered outliers; while when the standard variance of 
inliers is more than 1.0, LTS does not give the right results 
even when less than 30% of the data are outliers. 
 

From the discussions above, it can be observed that there are 
several conditions under which LMS and LTS failed to be 
robust. A crucial point is that these methods measure only one 
single statistic; the least median of residuals or the least sum 
of trimmed squared of the residuals, omitting other 
characteristics of the data. If the failures are considered, the 
results lose the most basic and common feature of the inliers 
with respect to the fitted circle-symmetry.     
 

Figure 3(a) shows that the LTSD and MSD are the right 
models, where the true centre is (0,0) and  radius is 10. It is 
noted that the LTSD method estimated the centre (0.28,0.27) 
and radius 10.52 and MSD method produces the centre (-
0.03,0.02) and radius 10.01. It is noted that, the LTSD can 
tolerate upto 40% contamination, whereas the MSD can 
tolerate more than 40% of clustered outliers, hence the fitted 
model with 45% contamination is displayed in the figure 3(b). 
 
 
 
 

 
(a) 

 

 
(b) 

 
Figure 1 Model Fitting with LMS and LTS (a) without outliers (b) with 

outliers 
 

 
(a) 

 
(b) 

 

Figure 2 Breakdown Plots (a) LMS (b) LTS 
 



International Journal of Current Advanced Research Vol 6, Issue 09, pp 6150-6155, September 2017 
 

 

6153 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The breakdown plot of LTSD and MSD is shown in the figure 
4.  It is noted that when the standard deviation of inliers is not 
more than 1.0; LTSD can produce the right results under high 
percentage of outliers (less than 40%).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

However, when the standard deviation of inliers is more than 
1.0, LTSD does not produce the right result even when the 
percentage of outliers is less than 30%. Further, it is observed 
that when standard deviation is above 1.0, the method MSD 
can tolerate upto 47% of outliers, while the standard deviation 
below 1.0, the breakdown point is about 50%. 
 

Experiment 2 
 

The performance of MSD over the other methods has been 
carried out when varying the standard deviation (0.2, 0.5, 0.8, 
1.0, 1.3, and 1.6) and various levels of contaminations for the 
generated data which is used in the previous experiment. The 
breakdown plots of MSD along with LMS, LTS and LTSD 
under varying standard deviation are displayed in the figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) 

 
(b) 

 

Figure 3 Model Fitting with LTSD and MSD (a) without outliers (b) 
with outliers 

 
a 

 
b 

 

Figure 4 Breakdown Plots (a) LTSD (b) MSD 
 

 
(a) std=0.2 

 
(b)  std=0.5 

 
(c) std=0.8 

 

 
(d) std=1.0 
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It is observed that when the level of contamination and 
standard deviations increases LMS and LTS does not produce 
the reliable estimates, because these methods are based on 
least median of squared residuals and Least trimmed 
residuals. The symmetry distance based robust estimator like 
LTSD and the proposed MSD produces the reliable estimates. 
When the contamination level and the standard deviation 
increases the LTSD can tolerate upto 30% but MSD can 
perform upto 47%. It is noted that the proposed MSD has 
higher breakdown point than the LTSD. 
 

Experiment 3 
 

To study the performance of the MSD in the context of model 
fitting over the other procedures a real image with outliers 
(LED ball with stick) was considered and is given in figure 
6(a). The detected edge of the image was obtained by using 
canny operator (Canny (1986)) with threshold 0.09 which is 
given in the figure 6(b).  The detected edge (circle) under the 
methods LMS, LTS, LTSD and MSD are displayed in the 
figure 6(c). Since the stick is considered as the clustered 
outliers in the image, the robust estimators LMS and LTS 
methods fails to detect the edge of the LED ball. The LTSD 
and MSD correctly detected the edge of the LED ball in the 
image. It is noted that the LTSD has small deviation in the 
model fitting, but the proposed MSD method more correctly 
fitted than LTSD. It is noted that the estimated centre and 
radius under the methods LMS, LTS, LTSD and MSD is 
[(322.31, 229.61), 151.45], [(215.16, 228.31), 160.32], 
[(182.26, 177.09), 162.13] and [(181.88, 174.02), 158.02] 
respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Summary 
 

In general, the LS method is very sensitive to outliers and thus 
it doesn’t fit well by considering all the data points. The most 
popular robust regression estimators like LMS and LTS 
breakdown at lower percentage of outliers when the outliers 
are clustered. Since, concept of trimming induces loss of 
information, the symmetry based LTS method also fails to 
tolerate certain amount of clustered outliers. To overcome 
these limitations, the concept of symmetry distance is applied 
in M estimator and proposed a method namely MSD. The 
superiority of the proposed method MSD has been studied by 
compared with LMS, LTS and LTSD under real and 
simulating environment in the context of circle fitting and 
also by considering the breakdown plots. It is concluded that 
if the data contains clustered outliers the MSD estimator is the 
most suitable one instead of LMS, LTS and LTSD. It is very 
much applicable in performing computer vision tasks, since it 
deals with multiple structures; one structure is outlier to the 
other ones.  
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