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The newly discovered role of Vitamin D is now the current area of research as the 
ubiquitous presence of its receptor VDR and the presence of its activating enzymes like 1 
alpha Hydroxylase implies its effect in various other metabolic processes other than bone 
growth and calcium metabolism. This review articles discusses about the role of Vitamin D 
deficiency and beneficial effect of its replenishment in Diabetes Mellitus particularly at 
molecular level affecting gene expression through various pathways. This new fangled role 
of Vitamin D in Diabetes Mellitus opens a new arena of research and prevention of 
Diabetes mellitus by its supplementation therapy. 
 
 
 
 
 
 
 
 

INTRODUCTION 
 

Rickets was first described by Whistler in 1645 [1] and 
Glisson in 1650[2]. Later, scientists established that rachitic 
children were cured after exposure to sunlight [3,4].            
The revelation by Goldblatt and Soames [5] showed that 
irradiation of 7-dehydro cholesterol in the skin could produce 
vitamin D. Windaus [6], a German chemist, elucidated the 
structures of vitamins D2 and D3. 
 

Most of our vitamin D requirement is met by synthesis from 
7-dehydocholesterol (7 DHC) or provitamin D3 present in the 
skin under the effect of sunlight therefore vitamin D in a strict 
sense is not a true vitamin. UV-B light (290-315 nm) breaks 
the B ring of 7DHC to form pre vitamin D3. Previtmin D3 is 
unstable and is rapidly isomerized to vitamin D3 by thermal 
energy then transported with the help of vitamin D -binding 
protein to the liver for further metabolism. 
 

7DHC is a precursor in the cholesterol biosynthetic pathway. 
The enzyme responsible for production of cholesterol from 
7DHC is 7-Dehydrocholesterol reductase .Several feedback 
mechanisms facilitate the prevention of Vitamin D 
intoxication by excessive exposure to sunlight. Cutaneous 
vitamin D precursors are photosensitive and get degraded to 
inactive sterols like lumisterol, tachysterol before entering 
into the circulation. A maximum of 10% -15% of the 
provitamin D gets converted to vitamin D. Melanin pigment 
present in the skin provides an additional protection. Vitamin 
D requires two successive hydroxylations in the liver  
 
 
 

(on C25) and kidney (on C1) using cytochrome P450 enzyme 
[7] to form its hormonally active metabolite, 1,25-
dihydroxyvitamin D. An alternative hydroxylation of 25(OH) 
D on C24 by the enzyme 24 hydroxylase (CYP24A), mapped 
on human chromosome 20q13[8] forms, 24,25(OH)2D  
ultimately leads to the formation of Calcitroic acid, the major 
end product of 1,25(OH)2D .  
 

Vitamin D is predominantly excreted in the bile, but some of 
its more polar metabolites like Calcitroic acid are excreted via 
the urine. Dietary vitamin D is transported by the lymphatic 
system by chylomicrons and stored in several tissues like fat 
and muscles.  
 

With ageing, cutaneous stores of pro-vitamin D decreases, 
together with decreased production of vitamin D by UV rays 
[9].  
 

Mechanism of action 
 

The mode of action of vitamin D can be separated in three 
phases:  
 

1. Endogenous activation of provitamin D by sequential 
hydroxylations at C25 and C1   

2. The binding of 1,25 (OH)2 D to a specific and quite 
ubiquitous nuclear transcription factor vitamin D 
receptor (VDR), a receptor now known to recruit a 
large number of proteins;  

3. The regulation of expression of a very large number 
of genes (between 1% and 5% of the human genome) 
involved in either calcium homeostasis or related to 
cell proliferation or differentiation. 
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The vitamin D receptor Protein 
 

1,25(OH)2D  the active form of vitamin D , exerts its effects 
by activating the nuclear VDR, a member of the nuclear-
receptor superfamily of ligand -activated transcription factors. 
Different functional domains are eminent in these nuclear-
receptor proteins of various members of this family [10].  

 

The human Vitamin D receptor gene (VDR gene), consists of 
14 exons and spans more than 60kb on chromosome 12[11, 
12]. The major transcript of the VDR gene is a 4.8 kb mRNA 
encoding a 427 amino acid protein. Binding of 1,25(OH)2D to 
VDR leads to a  conformational change of VDR followed by 
heterodimerization with unliganded RXR and binding to 
vitamin D target genes, with consequent release of 
corepressors and recruitment of coactivators and general 
transcription factors. This results in an assembly of an active 
transcriptional complex [13]. Corepressors bind to the 
unliganded steroid receptors, recruit histone deacetylases and  
silence the receptors thereby maintaining chromatin in a 
transcriptional repressive state [14].A hexanucleotide direct 
repeat by three nucleotides (DR3) is the cognate vitamin D 
response element (VDRE) to which RXR and VDR bind to 
the 5’ and 3’ half-site, respectively[15]. 
 

Nongenomic actions  
 

Various research groups have documented rapid effects by 1, 
25(OH)2D that are independent of transcription which are 
attributed to a membrane receptor for 1,25(OH)2D or by the 
localization of the nuclear VDR near the membrane[16]. 
These supposedly nongenomic effects include the opening of 
calcium or chloride channels and the activation of second 
messenger signalling pathways (phosphoinositide turnover, 
activation of protein kinase C, and the Ras/Raf/ERK/MAPK 
pathway). 
 

Classic target tissues 
 

An intricate interaction between calcium and phosphate, 
1,25(OH)2D and PTH is the result of the effects of 1, 
25(OH)2D on bone, intestine, kidney , and parathyroid  glands 
and its role in mineral metabolism.PTH mobilizes calcium 
from bone and stimulates the production of 1,25(OH)2D while 
1,25(OH)2D inhibits the secretion of the parathyroid glands 
through negative feedback mechanism. 1, 25(OH)2D  also 
limits its own availability by inhibition of 1α-hydroxylase and 
stimulation of 24 hydroxylase thus increasing the catabolism 
of  1,25(OH)2 D. 
 

Effects on intestine: Owing to the abundance of vitamin D 
receptor in the duodenum, followed by jejunum and ileum 
,the efficiency of the small intestine to absorb dietary calcium 
is increased by 1, 25(OH)2D. 1,25(OH)2D increases the 
production and activity of several proteins in the small 
intestine like TRPV6  and V5, calbindin-D9K , alkaline 
phosphatase and low affinity calcium-ATPase . The active 
transport of Ca2+ from the cytoplasm to the extracellular 
space against concentration gradient is brought about by the 
plasma membrane calcium pump and a sodium-calcium 
exchanger. The stimulatory effect of 1,25(OH)2D on the ATP 
dependant uptake of Ca2+ at the basolateral membrane 
involves an increase in PMCA gene expression[17]. 
 

Effects on kidney: - The kidney more specifically the 
proximal tubule plays a vital role in activation of Vitamin D 
through hydroxylation at C1 position by the enzyme 1α 

hydroxylase. Chronic renal failure reduces 1α hydroxylase 
activity, which ultimately results in renal osteodestrophy or 
uremic bone disease. 1, 25(OH)2D increases the distal tubular 
reabsorption of calcium mediated by  TRP channels (TRPV5) 
, calbindin-D9K and 28K, and the plasma membrane calcium 
ATPases. Contrary to intestine where active Ca absorption in 
the duodenum takes place before the less regulated diffusion 
process in the ileum, filtered Ca in the kidney is reabsorbed 
first by massive calcium-sodium reabsorption in the proximal 
convoluted tubule, followed by specific, actively regulated 
calcium reabsorption in the distal parts of the nephron. 
 

Effects on bone: 1, 25(OH)2D stimulates osteoclastogenesis 
as well as alter osteoblast function resulting in a complex 
interaction and modification of bone mineralization and 
resorption. From various studies and observations in man and 
animals, it is evident that vitamin D deficiency or intoxication 
impairs bone matrix mineralization. Bone mineralization and 
bone structure can be largely normalised in 1,25(OH)2D 
deficient or resistant mice by sufficient supply of minerals 
like Calcium and Phopshorus which indicates that direct 
effects of vitamin D metabolites on chondrocytes and bone 
cells are redundant with a definite suppley of minerals . 
However as most of the genes and proteins classically 
expressed in osteoblast and osteoclast cells are vitamin D 
regulated, it is likely that 1,25(OH)2D fine tunes bone mineral 
homeostasis. 
 

Nonclassic Actions of Vitamin D 
 

The virtual ubiquitous expression of the VDR in all nucleated 
cells, the presence of functional 1α-hydroxylase in various 
other tissues apart from the kidney, and the very large number 
of genes that are under direct or indirect control of 
1,25(OH)2D, all indicate toward a more universal role of 
vitamin D than just regulation of calcium, phosphate and bone 
metabolism. Documented evidences based on various studies 
carried on in cells , tissues , transgenic mice and observational 
studies in humans emphasizes on the finding that the 
functioning of nearly all major tissues or systems is 
modulated by vitamin D. Vitamin D is implicated in diverse 
settings such as glucose metabolism, cardiac diseases, 
cancers, and immunological regulation [18,19]. Hence, the 
role of Vitamin D in various diseases apart from bone health 
is now an active area of research and analysis. 
 

Vitamin D and Diabetes Mellitus 
 

Various studies have documented a suggested relationship 
between type 1 diabetes mellitus and vitamin D deficiency 
[20, 21]. Documented evidences shows that type 1 diabetes 
mellitus has improved and also prevented with Vitamin D 
supplementation. [22-25]. These effects have been primarily 
attributed to the immunomodulatory actions of vitamin D 
[25]. However, not much is known about the association 
between vitamin D and type 2 diabetes mellitus. Some 
literatures reveals that deficiency of Vitamin D leads to 
insulin insufficiency with its replenishment improving the  β-
cell function and insulin secretion.[26-30] Allelic variations in 
the vitamin D receptor (VDR) and vitamin D-binding protein 
(DBP) might influence glucose tolerance and insulin secretion 
thus contributing to the genetic risk for type 2 diabetes 
mellitus[31,32].  
 



Diabetes Mellitus and A New-Fangled Role of Vitamin D - A Review  

 

 5418

Type 2 diabetes mellitus is characterized by insulin resistance 
and altered insulin secretion. Hypovitaminosis D has long 
been suspected to be a risk factor for glucose intolerance.  
 

Obesity often associated with hypovitaminosis D is a 
definitive risk factor for type 2 diabetes mellitus. Vitamin D is 
efficiently deposited in body fat stores where its 
bioavailability is decreased and as a consequence PTH levels 
are elevated. [33,34]. There is substantiation that patients with 
hyperparathyroidism have an diminished glucose tolerance 
and  increased insulin resistance and  post parathyroidectomy, 
there is a rectification of abnormal insulin resistance and 
glucose intolerance[35,36]. Thus, the relationship between 
obesity, hypovitaminosis D, altered insulin secretion and type 
2 Diabetes may be the outcome of a number of interrelated 
metabolic effects. 
 

Epidemiological data revealed a low serum vitamin D 
concentration in a population at risk for type 2 diabetes 
compared with subjects not at risk. These patients were 
London Bangladeshi population and showed a higher 
prevalence of type 2 diabetes mellitus than British Caucasian 
population, signifying that vitamin D status might contribute 
to the pathogenesis of the disease [37]. A New Zealand study 
reported that newly diagnosed patients with type 2 diabetes 
had lower Vitamin D levels than the control subjects 
[38].Vitamin D replenishment study in a group of 
Bangladeshi Asian population showed improvement in 
secretion of Insulin and glucose levels, particularly on 
prolonged use. [26]. Vitamin D treatment in a Bulgarian 
population of type 2 diabetes female patients with high 
prevalence of hypovitaminosis D, showed beneficial effects 
on insulin secretion and action [27]. The Third National 
Health and Nutrition Examination Survey documented an 
inverse association between vitamin D status and diabetes in 
non-Hispanic white and Mexican American people but not in 
non-Hispanic black people [39]. A prospective study 
comprising of an English cohort with  a total of 524 randomly 
selected non diabetic men and women, aged 40-69 years were 
assessed for serum 25(OH)D and IGF-1, had their glycaemic 
status, lipids, insulin, anthropometry, blood pressure and 
metabolic syndrome risk (metabolic syndrome z score) 
derived at baseline and at 10 years of follow-up. The study 
reported an inverse association between baseline serum 
25(OH) D and future glycaemia and insulin resistance [40]. A 
study done by the authors also demonstrated an inverse 
relationship between Vitamin D levels and Fasting blood 
sugar levels in Type 2 Diabetes mellitus patients (41)  
 

Gathered evidences suggest that hypovitaminosis D may be a 
significant risk factor but not universally i.e it may not be 
affecting glycaemic status in all populations. This was 
corroborated by the lack of an inverse correlation between 
vitamin D status and diabetes in non-Hispanic black people, 
even though their serum vitamin D level was very low.            
A possible explanation suggested for the lack of association 
was the existence of a variable threshold effect among 
different ethnic groups [39] and decreased sensitivity to 
vitamin D or related hormones, such as parathyroid hormone 
(PTH) [42]. Chiu et al [43] found that healthy 
normoglycaemic subjects with hypovitaminosis D had a 
greater prevalence of developing metabolic syndrome later, 
than subjects without hypovitaminosis D. They also found a 
positive correlation between Vitamin D concentration and 

insulin sensitivity and an alteration in β-cell function 
associated with hypovitaminosis D. 
 

Type 2 Diabetes Mellitus and Vitamin D-related Genetic 
Factors 
 

Vitamin D Receptor Polymorphisms 
 

Vitamin D Receptor or VDR, a member of the steroid/thyroid 
hormone receptor family is a nuclear/cytosolic receptor and 
functions as a transcriptional activator of many genes 
.Vitamin D exerts most of its actions on target tissues through 
its binding to this receptor. The VDR gene, located on 
chromosome 12q13.1, is expressed in a large number of 
tissues, including those involved in the regulation of glucose 
metabolism, such as muscle and pancreatic β cells [44,45]. 
The VDR undergoes a conformational change after binding 
with vitamin D that result in subsequent phosphorylation 
mediated by kinase cascades, thereby facilitating its binding 
to the retinoid X receptor. The resultant heterodimer then 
interacts with vitamin D-responsive elements in the target 
genes, thereby modifying their expression [46]. Vitamin D 
also demonstrates an array of effects that probably do not 
involve gene expression, such as a rise in intracellular calcium 
and cGMP levels and activation of protein kinase C [47]. The 
existence of a membrane VDR (mVDR) [16] is now projected 
to be responsible for these effects of vitamin D [48]. 
Ironically, pancreatic β cells express both the specific 
cytosolic/ nuclear VDR and the mVDR. 
 

As vitamin D modulates insulin secretion, it is feasible that 
allelic variations of the VDR gene may contribute to the 
development of type 2 diabetes mellitus. 
 

Four common allelic variants/polymorphisms of the VDR 
gene have been identified: FokI, BsmI, ApaI and TaqI. The 
role of these VDR polymorphisms has been thoroughly 
studied in patients with diabetes. Association between the 
ApaI polymorphism and lower insulin secretion was 
documented in a study on healthy Bangladeshi Asian 
population living in London with a high prevalence of vitamin 
D deficiency [49]. A correlation between ApaI polymorphism 
and fasting plasma glucose and glucose intolerance was also 
observed in a community based study of older adults without 
known diabetes [50]. Ogunkolade et al [51] corroborated 
these data and also showed a positive association between the 
TaqI and the BsmI polymorphisms with reduced insulin 
secretory capacity in the same population. Speer et al [52] 
reported that patients with diabetes and obesity with the BB 
genotype of the BsmI allele in the VDR gene presented higher 
levels of postprandial serum C-peptide which points to a 
possible role in the pathogenesis of type 2 diabetes. 
 

A  Study also showed that VDR B allele, which predisposes 
to altered calcium absorption, elevated PTH and type 2 
diabetes mellitus, is associated with elevated fasting glucose 
in healthy young adults long before the onset of type 2 
diabetes [31]. It has also been reported that TaqI 
polymorphism is a major determinant of insulin secretion in 
subjects with Vitamin D deficiency [53]. The FokI 
polymorphism in contrast to other VDR polymorphisms is 
located within the 5’ end of the gene near the promoter 
region. The FokI polymorphism not only affects the 
translation product but also influences VDR interaction with 
the basal transcription factor IIB (TFIIB), a transcription 
factor that interacts with the VDR and modulates its 
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transcriptional activity [53]. The C-terminal hormone-binding 
domain of the VDR contains a consensus region for 
association with TFIIB [54]. 
 

The F variant of FokI polymorphism was reported to be more 
active than the f allele [44]. Subjects with the homozygous FF 
genotype showed increased insulin sensitivity compared to 
those with the f allele in an apparently healthy Caucasian 
population having a good glucose tolerance [54]. These data 
provide evidence for VDR as a candidate gene contributing to 
the susceptibility to type 2 diabetes mellitus.  
 

Vitamin D-Binding Protein 
 

The DBP/Calbindin-D28K functions as a specific transporter 
of circulating vitamin D metabolites [55] and is essential for 
vitamin D transport and functions. DBP, a highly 
polymorphic single-chain serum glycoprotein synthesized and 
secreted by the liver forms a complex with vitamin D and 
delivers the circulating vitamin D to target tissues [32]. Serum 
DBP concentration usually correspond to total concentration 
of vitamin D. Genetic variants of DBP have been known to be 
associated with diabetes and prediabetic traits in several 
populations. Two missense polymorphisms have been 
identified in sequence analysis of the Gc exons resulting in 
three electrophoretic variants of DBP: Gc1 fast (Gc1f), Gc1 
slow (Gc1s) and Gc2. These DBP variants have been 
suggested to influence the availability of active vitamin D in β 
cells and subsequently affecting insulin secretion [56]. Study 
shows an association between the Gc1 allele of DBP with 
type 2 diabetes in Japanese subjects [57] In yet another study 
on non-diabetic Dogrib Indians from Canada, the lowest 
levels of fasting insulin was seen in Gc 1f-1f homozygous 
subjects [58]. 
 

Vitamin D and β-cell Function 
 

The presence of the VDR in β cells and the vitamin D-
dependent calcium-binding proteins (DBP) in pancreatic 
tissue gives clear evidences about the role of vitamin D in 
insulin secretion [59]. Both in vitro and in vivo studies reveal 
that vitamin D is vital for normal insulin release in response 
to glucose. In vitamin D-deficient rats, glucose intolerance 
was found to be associated with diminished response to 
exogenous insulin resulting in reduced insulin sensitivity. 
[28,29]. Moreover, vitamin D deficiency results in decreased 
pancreatic insulin secretion and repletion of vitamin D in the 
early stages of experimental dietary vitamin D deficiency 
leads to a partial improvement in glucose tolerance and 
correction of insulin secretion in response to glucose [60] .In 
streptozotocin-induced diabetic rats, plasma calcium levels, 
DBP, circulating vitamin D and bone mass are reduced These 
defects have been attributed to altered vitamin D metabolism 
owing to an inhibitory effect of insulin deficiency on the 
activity of the renal 25(OH) D31α-hydroxylase [61].  
 

Vitamin D can have an effect on the secretion of Insulin 
through multiple pathways. It can be through a rise in 
intracellular calcium concentration using a non-selective 
voltage-dependent calcium channel [62, 63]. This lays 
emphasis on a major mechanism of action of vitamin D on 
insulin secretion and synthesis involving the β-cell calcium 
dependent endopeptidases, which facilitates the conversion of 
proinsulin to insulin. Calcium is also necessary for insulin 
release and β-cell glycolysis that plays a significant role in 
representing the circulating glucose concentration. 

Documented literatures show that vitamin D has a direct 
stimulatory effect on the growth of β cells of the pancreas 
resulting in the spur of insulin secretion seen during vitamin 
D replenishment [64].  
 

Evidences and mechanisms to support a benefit for vitamin 
D and calcium in type 2 DM 
 

Improvement in pancreatic β cell function 
 

Direct effect of vitamin D on insulin secretion 
 

Evidences in support are as follows: 
 

 Presence of specific  vitamin D receptor in pancreatic β 
cells [59] 

 Expression of 1αhydroxylase enzyme in pancreatic β 
cells[65]  

 Impaired insulin secretory response in mice lacking 
functional vitamin D receptors[66] 

 Presence of the vitamin D response element in the 
human insulin gene promoter[67] 

 Transcriptional activation of the human insulin gene by 
1,25-OHD [68] 

 Vitamin D deficiency impairs glucose-mediated insulin 
secretion from rat pancreatic β cells in vitro [30,69,70] 
and in vivo [71] 

 Supplementation with vitamin D restores insulin 
secretion in animals [30,72] 

 

Indirect effect of vitamin D on insulin secretion 
 

 Vitamin D contributes to normalization of extracellular 
calcium, ensuring normal calcium flux through cell 
membranes and adequate [Ca2+] pool 

 Regulation of calcium flux and [Ca2+] in the pancreatic β 
cell via regulation of calbindin, a cytosolic calcium-
binding protein [62] 

 

Calcium effect on insulin secretion  
 

Evidences in support are as follows 
 

 Alterations in calcium flux can have adverse effects on 
insulin secretion, a calcium-dependent process [73] 

 Calcium repletion alone normalized glucose tolerance 
and insulin secretion in vitamin D-depleted rats [74] 

 In diabetes patients, an oral calcium load augments 
glucose-induced insulin secretion [75] 

 Patients with resistance to 1,25-OHD were found to 
have abnormal insulin secretion only if they were 
hypocalcemic [76] 

 

Improvement on insulin action 
 

Evidences in support are as follows: 
 

 Presence of vitamin D receptor in skeletal muscle [77] 
 Vitamin D stimulates the expression of insulin receptor 

and enhances insulin responsiveness for glucose 
transport in vitro [78] 

 Vitamin D directly activates peroxisome proliferator 
activator receptor, a transcription factor implicated in 
the regulation of fatty acid metabolism in skeletal 
muscle and adipose tissue [79] 

 

Calcium effect on insulin action 
 

Evidences in support are as follows: 
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 Calcium is essential for insulin-mediated intracellular 
processes in insulin responsive tissues such as skeletal 
muscle and adipose tissue with a very narrow range of 
[Ca2+] needed for optimal insulin-mediated functions 
[80-82] 

 Changes in [Ca2+] in primary insulin target tissues 
contributes to alterations in insulin action [83-86] 

 Impairment of insulin receptor phosphorylation, a 
calcium-dependent process leading to impaired insulin 
signal transduction and decreased GLUT 4 activity [87] 

 Changes in [Ca2+] modulate adipocyte metabolism, 
which may promote triglyceride accumulation via 
increased de novo lipogenesis and inability to suppress 
insulin-mediated lipolysis leading to fat accumulation 
[88] 

 Patients with type 2 DM exhibit impaired cellular 
calcium homeostasis including defects in skeletal 
muscle, adipocytes, and liver [89] 

 

Improvement in systemic inflammation 
 

Effects of vitamin D on cytokines  
 

Evidences in support are as follows: 
 

 Vitamin D interacts with vitamin D response elements in 
the promoter region of cytokine genes to interfere with 
nuclear transcription factors implicated in cytokine 
generation and action [90] 

 Vitamin D can down-regulate activation of nuclear 
factor-κB which is an important regulator of genes 
encoding pro inflammatory cytokines implicated in 
insulin resistance [91,92] 

 Vitamin D interferes with cytokine generation by up-
regulating expression of calbindin a cytosolic calcium-
binding protein found in many tissues including 
pancreatic β cells. Calbindin has been shown to protect 
against cytokine-induced apoptosis that may occur after a 
rise in cytosolic free calcium [Ca2+] [93]. 

 

CONCLUSION 
 

From the facts that has evolved recently from various  in 
vitro, in vivo and interventional studies it is now proved 
beyond doubt that Vitamin D has multiple actions and effects 
on various tissues extending beyond its well accepted and 
emphasized role on bone growth and calcium metabolism. 
Many studies also highlighted the beneficial effects of 
Vitamin D on diseases like epilepsy, infertility, cardio 
vascular diseases and cancer. Vitamin D acts through its 
receptors and the VDR seem to be a molecule expressed in a 
ubiquitous manner in various tissues and organs. Hence, more 
in depth studies on the detrimental and beneficial effects of its 
deficiency and replenishment can unearth new preventive 
methods of many diseases. 
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