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A R T I C L E  I N F O                              A B S T R A C T  

 
 

A prey-predator model is considered in which Lotka-Voltera interaction term is used as the 
functional response of the predator to the prey population. The interaction term is 
proportional to the square root of the prey population in which prey exhibits herd structure. 
Here we consider that both prey and predator have alternative growth rate. We check the 
behavior of the different equilibrium points of the model both analytically and numerically. 
 
 
 
 
 
 
 
 
 

 
INTRODUCTION 
 

It is well known that the population dynamics of different 
species are inevitably linked. In recent years researchers have 
taken several approaches to study this interesting 
phenomenon in prey predator system. Previously a good 
number of studies have shown that predators take 
disproportionate number of prey that are infected by parasites 
(see, Vaughn and Coble [1]; Temple [2]). Chattopadhyay and 
Arino [8] studied predator-prey system when predator eat 
infected prey and derived the persistence and extinction 
conditions and also determined the condition for Hopf 
bifurcation. Xiao and Chen [11] modified the model of 
Chattopadhyay and Arino by introducing the delay term and 
studied the dynamics of the modified system. Mukherjee [16] 
analysed a generalized prey-predator system with parasite 
infection and obtained conditions for persistence and 
impermanence. Roy and Chattopadhyay [10] introduced a 
mathematical model of disease-selective predation 
incorporating this concept. They considered a predator-prey 
system where the predator has specific choice regarding 
predation and it can recognize the infected prey and avoid 
those during predation. Holmes and Bethel [3] discussed 
many examples in which the parasite changes the external 
features or behavior of the prey, so that infected prey are more 
vulnerable to predator. Infected prey sometimes choose such 
locations that are more accessible to predators; for example,  
 
 
 
 

infected fish or aquatic snails may live close to the water 
surface or snails may live on top of vegetation rather than 
under protective plant cover. Similarly, infected prey 
sometimes became weaker or less active, so that they are 
caught more easily by predator (see [22]). In a prey-predator 
model with disease in prey Anderson and May [5] found that 
the pathogen tends to destabilize the prey-predator 
interactions and exhibits limit cycles when predation on 
infected prey is much and no reproduction in infected prey. 
Here we consider a prey predator model where both prey and 
predator species have alternative growth and prey are in 
group. That is they are in herd behavior. We firstly find out 
equilibrium points and stability analysis of these equilibrium 
points. Finally we draw the attention numerically to support 
the analytical result. 
 

Mathematical Model Formation 
 

Here the following assumptions are made to formulate the 
mathematical model 
 

1. We assume that prey population	(ݐ)ݔ grows logistically 
in the absence of predator with intrinsic growth rate r 
and   carrying capacity k of the prey population.  

2. Also the prey population gathered in a group to form a 
herd as their defensive mechanism to save themselves 
from predator population. 

3. For predator population(ݐ)ݕ, it is assumed that there is 
a natural logistic growth with intrinsic growth rate ݎଵ  
and carrying capacity	݇ଵ.  
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4. It is also assumed that, beside logistic growth the 
predator population has an alternative food source 
which they get by consuming the prey population. 

Based on the above mentioned assumption we consider the 
model as: 
 
ௗ௫
ௗ௧

= ݔݎ ቀ1− ௫
௞
ቁ −  ,	ݕݔ√ߚ

ௗ௬
ௗ௧

= ݕଵݎ ቀ1− ௬
௞భ
ቁ +  (1).…………                                 .ݔ√ݕߚ

 

ଵݎ,݇,ݎ ,݇ଵ,	ߚ are all positive constants. 
 

Positive invariance of the system 
 

Let us put equation (2.1) in a vector form by setting  		x =
col(x, y) ∈ ܴଶ 
 

(ܺ)ܨ = ൤ܨଵ(ܺ)
ଶ(ܺ)൨ܨ = ቎

ݔݎ ቀ1− ௫
௞
ቁ − ݕݔ√ߚ

ݕଵݎ ቀ1− ௬
௞భ
ቁ+ ݔ√ݕߚ

቏.  

 

Where ܥ:ܨା → ܴଶ and ܨ ∈  The equation (2.2) becomes .∞ܥ
ܺ̇ = (ߠ)ܺ with ,(ܺ)ܨ = (∅ଵ(ߠ), ∅ଶ(ߠ)) ∈ (ߠ)ା  and ∅௜ܥ >
0	(݅ = 1, 2). It is easy to cheek in the above equation that 
whenever choosing ܺ(ߠ) ∈ ା  such that ௜ܺܥ = 0, then 
(ݔ)௜ܨ ⋮ (ݐ)௜ݔ = (ݐ)ݔ ,0 ∈ ାܥ ≥ 0, (݅ = 1, 2). Due to lemma 
(Yang et al.[18]) any solution of the above equation with 
(ߠ)ܺ ∈ (ݐ)ܺ ା  , sayܥ = (ߠ)ܺ such that ,((ߠ)ܺ,ݐ)ܺ ∈ ܴଶ for 
all ݐ > 0. 
 

Boundedness of solution 
 

Let us define ݓ = ݔ +   The time derivative .ݕ
 
ௗ௪
ௗ௧

= ௗ௫
ௗ௧

+ ௗ௬
ௗ௧

= ݔݎ ቀ1− ௫
௞
ቁ − ݕݔ√ߚ + ݕଵݎ ቀ1− ௬

௞భ
ቁ+  .ݔ√ݕߚ

Now,  ௗ௪
ௗ௧

+ ݓݍ = ݔݎ ቀ1− ௫
௞
ቁ+ ݕଵݎ ቀ1− ௬

௞భ
ቁ+ ݔ)ݍ +  (ݕ

ௗ௪
ௗ௧

+ ݓݍ = ݇ (௥ା௤)మ

ସ௥
+ ݇ଵ

(௥భା௤)మ

ସ௥భ
− ௥

௞
ቂݔ − ௞

ଶ௥
ݎ) + ଶቃ(ݍ −

௥భ
௞భ
ቂݕ − ௞భ

ଶ௥భ
ଵݎ) + ଶቃ(ݍ ≤  .ܤ

Where ܤ = ݇ (௥ା௤)మ

ସ௥
+ ݇ଵ

(௥భା௤)మ

ସ௥భ
, then ௗ௪

ௗ௧
+ ݓݍ ≤

  .which is a linear differential equation in w ,(ݐ݊ܽݐݏ݊݋ܿ)ܤ
After solving we get, ݓ ≤ ஻

௤
+  ௤௧ where C is anି݁ܥ

integrating constant. At ݐ = ݓ,0 = 0, so ܥ = − ஻
௤
. Therefore 

ݓ ≤ ஻
௤

(1− ݁ି௤௧) and since  ݓ ≥ 0, so 0 ≤ ݓ ≤ ஻
௤

(1−
݁ି௤௧). That is solutions of the system are all bounded. 
 

Qualitative Analysis of the Model System 
 

Equilibrium and Existence 
 

The system of equation (2.1) has four equilibrium points, 
namely ܧ଴(0, ,݇)ଵܧ ,(0  The .(∗ݕ,∗ݔ)∗ܧ ଶ(0,݇ଵ) andܧ ,(0
equilibrium point ܧ଴(0, ,݇)ଵܧ ,(0 0) are unstable and the 
equilibrium point ܧଶ(0,݇ଵ) is stable. The interior equilibrium 
point ݔ)∗ܧ∗,   can be obtained from the equation (∗ݕ
∗ݔݎ ቀ1− ௫∗

௞
ቁ − ∗ݕ∗ݔ√ߚ = 0  and  ݎଵݕ∗ ቀ1− ௬∗

௞భ
ቁ+ ∗ݔ√∗ݕߚ =

0. The ݔ∗ can be obtained as ݔ∗ = ௥భమ

ఉమ
(1− ௬∗

௞భ
)ଶ and ݕ∗ can be 

obtained from the equation  
 ஺஻
௞భయ
ଷ∗ݕ − ଷ஺஻

௞భమ
ଶ∗ݕ + ቀ஺(ଷ஻ିଵ)

௞భయ
+ ቁߚ ∗ݕ − ܤ)ܣ − 1) = 0. Here 

both of ܣ = ݎ ௥భ
ఉ

 and ܤ = ௥భమ

௞ఉమ
 are positive and so ஺஻

௞భయ
  and ଷ஺஻

௞భమ
 

both are positive. Hence from the above equation we observe 

that there is at least one change of sign in the coefficient of 
the above equation. So unconditionally the above equation 
has at least one positive real root. Thus the interior 
equilibrium point (∗ݕ,∗ݔ)∗ܧ always exists. 
 

Stability Analysis 
 

We now discuss the stability of the interior equilibrium point 
,∗ݔ)∗ܧ  The variational matrix at this equilibrium point .(∗ݕ
can be obtained as  
 

∗ݔ)ܬ (∗ݕ, = ቌ
ݎ − ଶ௥௫∗

௞
− ఉ௬∗

ଶ√௫∗
∗ݔ√ߚ−

ఉ௬∗

ଶ√௫∗
ଵݎ −

ଶ௥భ௬∗

௞భ
+ ∗ݔ√ߚ

ቍ  and the 

corresponding characteristic equation is  
 

ቮ
ݎ − ଶ௥௫∗

௞
− ఉ௬∗

ଶ√௫∗
− ߣ ∗ݔ√ߚ−

ఉ௬∗

ଶ√௫∗
ଵݎ −

ଶ௥భ௬∗

௞భ
+ ∗ݔ√ߚ − ߣ

ቮ = 0. The 

characteristic roots are obtained as 
ߣ2  = ݎ ቀ1 − ଶ

௞
ቁݔ∗ + ( ఉ

ଶ√௫∗
− ௥భ

௞భ
∗ݕ( ± ටݎ ቀ1 − ଶ

௞
ቁݔ∗ + ( ఉ

ଶ√௫∗
− ௥భ

௞భ
∗ݕ(

ଶ
−  .∗ݕଶߚ2

 

The sufficient condition for stability ݎ ቀ1− ଶ
௞
ቁݔ∗ +

ቀ ఉ
ଶ√௫∗

− ௥భ
௞భ
ቁݕ∗ < 0 with ݎ ቀ1− ଶ

௞
ቁݔ∗ + ( ఉ

ଶ√௫∗
− ௥భ

௞భ
∗ݕ(

ଶ
−

∗ݕଶߚ2 < 0. 
 

Numerical Simulation and Conclution: 
 

In this paper we show that the solution of the system are 
positive and attains bound.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1(a) Shows that the stability of the interior equilibrium point 
taking the parametric values r=0.03,ݎଵ=.1,k =12, ݇ଵ=8 and β= 0.001. 

 
 

Figure 1b Shows that the stability of the interior equilibrium point taking the 
parametric values r=0.03,ݎଵ=.01,k =12, ݇ଵ=8 and β= 0.001:0.001:0.003. 
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We find out all equilibrium point and find out the condition of 
existence of these equilibrium points. Then we show the 
stability of the model system. In this paper we try to point out 
how the prey gets advantage due to herd behavior and the 
existence and stability of the model when both the prey and 
predator species have their alternative growth rate. For 
understanding we try to solve the equation (1) numerically 
using Mat-lab. Firstly we find out the stability of the interior 
equilibrium point. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (1) shows the surface plot of the model under taking 
the parametric values r=0.03, ݎଵ=0.01, k=12, ݇ଵ=8 and 
β=0.001. Now we consider four different cases for 
neighbouring values of β and we find out four different 
surface plot. These figures show how the solution space 
changes for changing the values of β. Now keeping the 
parametric values same other than β we plot four figure as 
follows: 
 

For figure (1) the solution of the system tends to (10.99, 
9.11). For figure (2) the solution of the system tends to (9.19, 
11.84). For figure (3) the solution of the system tends to 
(6.28, 13.78). For figure (4) the solution of the system tends 
to (2.63, 13.97). We show here if the rate of β increasing then 
how the solution of the model system changes. 
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