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A R T I C L E  I N F O                              A B S T R A C T  
 

 

In this Paper, The purpose of applying the Cox-regression is mainly for comparison 
between the treatment regimens or comparison of dosage level of radiotherapy, their 
ultimate aim being identification of the prognostic factors of five-year survival probability 
of breast cancer patients. The Cox-Proportional hazard model most commonly used 
multivariable approach for analysing survival time data in medical research. Finally, a 
model with four covariates, namely, recurrence of the disease, age of the woman, duration 
of radiotheraphic treatment and stage of the disease, has been identified as the prognostic 
factors of breast cancer survival after the completion of treatment. It is usual to work with 
the survivor function for descriptive analyses and the hazard function for assessing the 
relationship between explanatory variables and survival time. A numerically effective way 
of computing the LASSO estimate, but it is useful for assessing the complexity of the fit. 
while one that developed from the ducts is called ductal carcinoma. The vast majority of 
breast cancer cases occur in females. In this paper, it is proposed study on breast cancer in 
women. Using hazard models based on semi and non semi parametric models. Numerical 
illustrations are also provided. 
 
 
 
 
 

INTRODUCTION 
 

The basic goals of survival analysis are to describe the 
survival experience of the study cohort and possibly also to 
assess whether survival is associated with explanatory 
variables refer to Dickman (2002). Statistical modelling 
approach is used to explore the relationship between the 
survival experience of a patient and the explanatory variables 
for detailed discussion, refer to a Collett (1994). It is usual to 
work with the survivor function for descriptive analyses and 
the hazard function for assessing the relationship between 
explanatory variables and survival time. Since hazard function 
does not involve the cumulative history of events, it is 
considered as the main vehicle of statistical modelling. 
Several statistical methods have been proposed for modelling 
survival analysis data. The survival methods may be divided 
into two broad categories such as proportional hazard 
approaches and accelerated failure time models, refer to 
Bradburn, (2003). The Cox model is the most frequently used 
regression model in survival analysis Bender (2005). Here the 
Cox regression model has been used to identify the 
relationship between the selected variables and the survival 
time after the completion of treatment. 
 

Methodology and Data Collection 
 

 Data were collected from Dharmapuri Medical College and 
hospital located in Dharmapuri district of Tamilnadu.   

The Government Dharmapuri Medical College was started in 
the year 2008, Dharmapuri district and it is located in the 
Northern part of India, and the college is situated on Nethaji 
Bye Pass Road in the centre of Dharmapuri within the limits 
of Dharmapuri Municipality. The population of the study is 
the Breast cancer patients of Dharmapuri district and the study 
population consist of 100 patients over a period of one year 
from July 2015 to May 2016 and the Samples ware selected 
using stratified random sampling. The sample size n is 
determined by the procedure suggested by Murthy. 
 

Breast Cancer: Causes, Symptoms and Treatments 
 

Breast cancer is a kind of cancer that develops from breast 
cells. Breast cancer usually starts off in the inner lining of 
milk ducts or the lobules that supply them with milk.              
A malignant tumor can spread to other parts of the body.              
A breast cancer that started off in the lobules is known 
as lobular carcinoma, while one that developed from the ducts 
is called ductal carcinoma. The vast majority of breast cancer 
cases occur in females. This article focuses on breast cancer in 
women. We also have an article about male breast cancer. 
 

Breast Cancer Is The Most Common Invasive Cancer In 
Females Worldwide. 
 

It accounts for 16% of all female cancers and 22.9% of 
invasive cancers in women. 18.2% of all cancer deaths 
worldwide, including both males and females, are from breast 
cancer. Breast cancer rates are much higher in developed 
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nations compared to developing ones. There are several 
reasons for this, with possibly life-expectancy being one of 
the key factors - breast cancer is more common in elderly 
women is the richest countries live much longer than those in 
the poorest nations. The different lifestyles and eating habits 
of females in rich and poor countries are also contributory 
factors, experts believe. According to the National Cancer 
Institute, 232,340 female breast cancers and 2,240 male breast 
cancers are reported in the USA each year, as well as about 
39,620 deaths caused by the disease. 
 

Symptoms of Breast Cancer 
 

While these symptoms don’t automatically indicate breast 
cancer, it is important to speak to a doctor if you have any of 
these conditions, A change in the size or shape of the breast, 
Dimpling or puckering of the skin,  A nipple turned inward 
Discharge from the nipple Scaly, red, or swollen skin on the 
breast or nipple. Breast cancer is a tumor that has become 
malignant - it has developed from the breast cells. Breast 
cancer cells are more likely to spread to certain parts of the 
body than others. Breast cancer cells travelling in the 
lymphatic system can spread to lymph nodes anywhere in the 
body. The main breast cancer treatment options may include: 
radiation therapy (radiotherapy), surgery [scalpel blades are 
usually made of hardened and tempered steel, stainless steel, 
or high carbon steel; in addition, titanium, CERAMIC, 
diamond and even obsidian knives are not uncommon], 
biological therapy (targeted drug therapy), hormone therapy 
and chemotherapy.  
 

Breast cancer is the most common cause of death from cancer 
in women worldwide. According to the Ferromagnetic Theory 
of Cancer (Theory from The Old Testament), any cancer is a 
subtle iron disease. Any human cell should be interpreted as a 
society of dia-, para-, superpara-, ferri- and ferromagnetic 
nanoparticles. Normal breast cells are cells with NON-
NUMEROUS intracellular superparamagnetic, ferrimagnetic 
and ferromagnetic nanoparticles (breast cancer cells - with 
NUMEROUS).  
 

Breast cancer should be interpreted as intracellular superpara-
ferri-ferromagnetic ‘infection’. Cancer researchers can 
successfully destroy breast cancer by non-complicated anti-
iron methods of The Old Testament. Anti-iron intratumoral 
injections [sulfur (2%) + olive oil (98%); 36.6C - 39.0C] (by 
CERAMIC needles) can suppress any tumors and large 
metastases. Anti-iron accurate slow blood loss (even 75%) 
[hemoglobin control], anti-iron goat’s milk diet and anti-iron 
drinking water containing hydrogen sulfide can neutralize any 
micro-metastases. 
 
 
 
 
 
 
 
 
 
 
Cox-Proportional Hazard 
 

The Cox-Proportional hazard moder (Cox,1972) is the most 
commonly used multivariable approach for analysing survival 

time data in medical research (Bradburn, 2003(1)). There are 
two approaches to this censored data regression model, the 
approach originally proposed by Cox and the counting 
process approach. Based on the works of Cox (1972), Collett 
(1994), Everitt (2003), Klein and Moeschberger (1997) and 
Kalbflesch and Prentice (1980), a brief description of the 
Cox-Proportional hazard model is given below, The data 
based on a sample size of n, consists of (tj,j,Zj), j = 1,2,...,n 
where tj is the time on study for the individual, j is the event 
indicator (j = 1 if the event has occurred and j = 0 if the 
lifetime is censored) and Zj is the vector of covariates or risk 
factors for the individual (Zj may be a function of time) which 
may affect the survival distribution of T, the time to event. 
The relationship between the distribution of event time and 
the covariates or risk factors Z (Z is 1 X p vector) can be 
described in terms of a model according to Cox, in which the 
hazard rate at time 't' for an individual is 
 

(t;z) = o(t) exp(z)                                                         …(1) 
 

Where o(t) is the baseline hazard rate, an unknown 
(arbitrary) function giving the hazard function for the standard 
set of conditions z = 0 and  is a p x 1 vector of unknown 
parameters. The factor exp (z) describes the hazard for an 
individual with covariates relative to the hazard at standard z 
= 0. The Cox model is also called a proportional hazards 
model, since the ratio of the hazard rates of two individuals 
with covariate values z and z* is (t | z) (t | z*) = exp (z-
z*), an expression that does not depend on t. Estimates of the 
unknowns o(t) and  are obtained as follows: 
 

Let t1 < t2 <, ..., < tD denotes the ordered distinct event time 
and let z(i)k be the covariate associated with the individual 
whose failure time is ti, k = 1,2,..., p. Further, define the risk 
set at time ti, R(ti), as the set of all individuals who are still 
under study at time just prior to ti. The partial likelihood 
according to Cox, based on the hazard function is expressed 
by,  
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The partial maximum likelihood estimates are found by 
maximizing the above function and the logarithm of (L()) is  
 

     ...(3)
 

 

The efficient score equation are found by taking partial 
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The information matrix is the negative of the matrix of second 
derivatives of the log likelihood and is given by 
I()=[Igh()}pxp with the (g,h) the element given by,  
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…(5) 
 

The maximum likelihood estimates are found by solving the 
set of nonlinear equations n()= 0, h = 1, 2, …, p. As it is 
not possible to perform this maximization analytically, 
numerical methods can be employed (Klein and 
Moeschberger (1997)). Algorithms for the estimation of  are 
available in many statistical packages. 
 

Hazard Ratio 
 

Cox regression is the technique that provides simultaneous 
estimates of hazard ratios in the presence of multiple 
explanatory variables (Cox and Oakes, 1984). In Cox 
regression, the hazard ratio is assumed in dependence of the 
baseline hazard function, which can be of any form. This can 
be expressed by the formula, 
 

Hazard ratio at time t=h0(t)  h1  h2 .... hk 
Where h0(t) is the base line hazard function at time t and hi is 
the hazard ratio associated with the observed category of the 
ith factor (Bull and Spiegelhalter, 1997). If a single factor is 
entered into a Cox regression, then unadjusted hazard ratios 
may be estimated and p-values calculated; these p-values will 
be essentially equivalent to those obtained using the log-rank 
procedure. The hazard ratio or simply “rate ratio” is the 
exponential of an estimated regression coefficient refers 
Symons and Moore, (2002). In general, the hazard ratio (HR) 
is a measure of the relative survival experience in two groups 
and may be estimated by 
 

HR = 1 1

2 2

/
/

O E
O E  

 

Where Oi/Ei is the estimated relative hazard in group i refer to 
Clark et al.( 2003). 
 

Relationship between Relative Risk, Hazard Ratio and Odds 
Ratio 
 

In a prospective study, (Symons and Moore, 2002) defines the 
relative risk is 
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Where P0 and P1 are the probability of dying during the 
follow-up period, [0,t], from the kth Cause of death, for the 
unexposed and exposed group respectively.  
The odds ratio is 
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Rothman and Greenland (1998) summarize as follows: "Thus 
one would usually expect the rate ratio to fall between the risk 
ratio and odds ratio". Here "risk ratio and odds ratio" are used 
for relative risk and hazard rate ratio respectively. When 
follow-up is short, event rates are small and relative risks are 
close to unity and the Hazard Rate (HR) odds ratio (OR) and 
relative risk (RR) approximate one another (Symons and 
Moore, 2002). The similarity of the hazard rate ratio and 
relative risk has been indicated by Hosmer and Lemeshow 
(1999) and by Rothman and Greenland (1998). Both the 
relative risk and hazard ratio are interchangeably used. For 
example, Everitt (2003) has mentioned that the interpretation 
of Bj is that exp(Pj) gives the relative risk change associated 
with an increase of one unit Xj and all other explanatory 
variables remaining constant. 
 

Models 
 

The objective of model building in survival analysis is to 
identify a set of potential explanatory variables that contribute 
towards the hazard function. For identifying the contribution 
or association of a variable with the survival time, a lot of 
procedures are available. The choice of the statistical model 
covariates mainly depends upon the objective of the study. 
Generally any statistical model contains more than one 
covariate to predict the outcome and is called a multivariable 
model. Bradburn (2003) explains the three possible scenarios 
as to why a study may use a multivariate model. They are 
 

1. A single factor is under investigation for its 
association with survival, but several other factors 
exist,  

2. A collection of factors of known relevance is under 
investigation for their ability to predict survival and 

3. Where a collection of factors are under investigation 
for their potential association with survival, possibly 
with known additional factors. 

 

The breast cancer study is a combination of (ii) and (iii) 
scenarios. 
 

RESULTS 
 

Models that are based purely on statistical significance may 
not be clinically meaningful, refer to Collect (1994). Hence, 
when a model is built, i.e. whenever a covariate is added to 
the model or removed from the model, proper care should be 
given. The above concept has been simply explained by 
Henderson and Velleman (1981). 
 

Common choices for model building are: 
 

1. "Semiautomated" methods such as forward selection 
backward elimination or a combination of the two 
known as stepwise procedure and 

2. "General Strategy" or "hierarchic principle" for 
model selection. 

 

The "Semiautomated" procedures have their own merits and 
demerits. Whenever the number of covariates is more either 
forward selection or backward elimination or stepwise 
methods are much useful in reducing the number of 
covariates. However, they are mainly dependent on the 
variable selection process that has been used, that is, whether 
it is stepwise procedure, forward selection or backward 
elimination, the stopping rule is used to determine whether a 
term should be included in or excluded from a model(Collect 
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1994, Bradburn, 2003 and Clark et at 2003(1)). Collect (1994) 
recommends the following "general strategy" for model 
building, which consists of four steps. 
 

1. The first step is to fit models that contain each of the 
variables one at a time. The values -2 log L  (-21og 
likelihood) for these models are then compared with 
those for the null model to determine which variables, 
on their own, significantly reduce the value of this 
statistic. 

2. Then the variables, which appear to be important from 
step 1, are fitted together. In the presence of certain 
variable, others may cease to be important. 
Consequently, those variables which do not 
significantly increase the value of -2 logs L  when they 
are omitted from the model can now be discarded. 
Once a variable has been dropped, the effect of 
omitting each of the remaining variables in turn should 
be examined. 

3. Variables, which are not important as per step 1, are 
added one by one, with variables in step 2. If any 
variable is found to be significant, it is retained. The 
process of step 2 is repeated with each added variable. 

4. A Final check is made to ensure that no significant 
variable is omitted from the model and no variable is 
included in the model without significant contribution. 

 

The above procedure is time consuming if the number of 
variables is more and further the multiple testing becomes 
problematic. It is very rarely used in medical research on 
survival analysis due to its non-inclusion in many statistical 
software packages. Here an attempt has been made using this 
procedure to find out the significant prognostic factors of five 
years survival of breast cancer patients based on the collected 
data 
 

Sample size considerations 
 

It is implicitly assumed that the subjects in a study are 
representatives of a wider population, the study aims to be 
addressed. Any estimate based on a small number of 
individuals will be less reliable than the one based on a large 
number. Further, smaller data sets may not have sufficient 
power to detect a covariate that has a significant effect on 
survival. The power of survival analysis is related to the 
number of events rather than the number of participants 
Bradburn (2003). Simulation works have suggested that at 
least 10 events need to be observed for each covariate 
considered, and anything less will lead to problems, for 
example, the regression co-efficient becomes biased by 
Peduzzi (1995). The breast cancer data used in the present 
study consists of 100 deaths and 10 covariates implying 
approximately 15 events per covariate.  
 

Conversion of continuous variables 
 

When the dependence of the hazard function on a variate, 
which takes a wide range of value is to be modelled, it is ideal 
to convert the continuous variable as a categorical variable 
suggested by collect (1994). For this purpose, the following 
procedure is adopted: 
 

1. The values of the variate are first grouped into four 
or five categories containing approximately equal 
number of observations,  

2. A factor is then defined whose level corresponds to 
this grouping. 

 

In this study, the continuous variables, namely, the age of the 
woman, tumour size and treatment duration have been 
converted into categorical variables based on the clinical 
importance and number of observations. 
 

Survival Application of Cox PH Model to Breast Cancer 
Data 
 

The fitting Cox PH model to this data, the survival time after 
completion of the treatment has been considered as the 
dependent variable and the following variables have been 
considered as prognostic variables, namely, age of the woman 
at diagnosis, place of residence at diagnosis, associated 
diseases, if any, stage of the disease at diagnosis, size of the 
tumour at diagnosis, nucleus status at diagnosis, type of the 
cell status, treatment provided, duration of radiotheraphic 
treatment and recurrence of the disease curing the follow up 
period. A null model has been fitted without any explanatory 
variable. The statistics -2 log L  has been noted. The variables 
have been entered as explanatory variables separately. Their -
2 log L  statistical value and its difference have been noted 
and they are shown in table 1. The regression coefficient and 
its corresponding Hazard ratio value with 95% confidence 
intervals are shown in table 1. Among the 10 variables fitted 
separately, the following five variables -2 log L  statistics has 
been found be significant compared to the null model -2 log
L  statistics. These include age of the woman, nucleus status 

of cell, stage of the disease at diagnosis, duration of 
radiotheraphic treatment and any recurrence during the follow 
up period. All the five variables have been fitted as 
explanatory variables simultaneously. Then one variable has 
been omitted and the corresponding the -2log L  statistics has 
been noted. The results of comparison between each model 
with the full model of all the five significant variables in step 
1 are shown in table 3. Among them the variable nucleus 
change in the cell has been found to be non-significant 
indicating that it could be omitted from the selected five 
variables 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The next step is keeping the four variables recurrence of the 
disease, the stage of the disease, duration of radiotherapy 
treatment and age of the woman, -2 log L  has been 
calculated. Again this -2 log L  has been compared with the 
models of one variable omitted at a time. The results are 
shown in table 3.  

Table 1 Values of -2log L for Univariate Models 
Analysis 

Ariable -2log L  
value 

DifferenceDegrees of 
Freedom 

‘P’ 
Value 

Null Model 1769.231 - - - 
Age 1664.320 13.5 3 0.001 

Place of Residence 1671.640 1.206 1 0.242 
Associated Disease 1645.221 2.004 1 0.051 

Tumour Size 1679.023 0.143 1 0.347 
Histology 1665.241 1.821 2 0.342 

Change in Nucleus 1675.560 2.591 1 0.054 
Stage 1638.642 36.564 3 <0.01 

Type of Treatment 1678.611 0.541 1 0.321 
Duration 1664.391 12.811 3 0.002 

Recurrence 1591.06 78.161 1 <0.001 
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All the variables are found to be significant indicating that 
these four variables are important and they influence on the 
survival of the breast cancer patients. 
 

The final model with the above four variables has been fitted. 
The results of the regression coefficient and the corresponding 
hazard ratio with 95% confidence limits are shown in table 4. 
The hazard ratio of the variable recurrence has been found to 
be 43, which indicates that the chance of death within five 
years after completion of the treatment is 4.3 times higher for 
a woman with the recurrence of the disease within five years 
compared to the woman who has no recurrence during the 
study period. 
 

The chance of death is 7.1 times higher for a woman with 
stage IV of the disease compared to the woman with stage I. 
Similarly, the chance of death is 2.4 times higher for a woman 
in disease status of stage III level compared to the woman at 
stage I disease level. 
 

The other two variables, age of the woman and duration of 
radiotheraphic treatment, are found to be non-significant at 
5% level of significance. However, the chance of death is 
higher for older women compared to the younger group and 
for the woman with longer or shorter duration of 
radiotheraphic treatment compared to the normal/ideal 
duration of radiotheraphic treatment days. 
 

The stage i.e. severity of the disease has been measured at 
four level as described by FIGO. In this data, only 5 patients 
have been in stage IV level i.e. disease spread to other organs 
of the body. Clinically, it is very severe and difficult to treat. 
For the above analysis, stage IV has been included, because of 
its clinical importance though it consists of only 5 patients. 

However, statistically it is insignificant. Hence, another 
analysis has been performed with the above selected four 
variables, omitting the patients with severity of disease at 
level IV. This analysis is called analysis II. The total number 
of observations in analysis II is 473. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Analysis II 
 

As in analysis I, all the 10 variables have been first entered as 
explanatory variables separately. Their corresponding -2 log
L  statistics has been calculated and compared with the null 

model -2 log L . The results are shown in table 5. There has 
been no wide change in their significance level of the 
variables observed, compared to above fitted model. The 
results are shown in table 6. 
 

In analysis II also, all the five variables that are significant in 
analysis I have been found to be significant at 5% level. As in 

Table 2 Hazard Ratios from the Cox PH Model 
(Univariate Analysis-I) 

 

Variable Parameter 
Estimate 

Standard 
Error 

P<Chi 
Sq 

Hazard 
Ratio 

95% Hazard 
Ratio 

Upper 
Limit 

Lower 
Limit 

Age (in 
Years) 

<40 - - - - - - 
40-49 0.404 0.115 0.056 1.401 0.456 2.405 
50-59 0.234 0.224 0.207 1.451 0.735 2.113 
>60 0.502 0.231 0.032 1.643 1.042 2.522 

Place Urban - - - - - - 
Rural 0.158 0.165 0.145 1.214 0.872 1.589 

Associated 
Disease Yes 0.503 0.314 0.106 0.502 0.326 1.215 

Tumour Size <4.0 - - - - - - 
>4.0 -0.028 0.168 0.439 0.736 0.672 1.263 

Histology 

SCC - - - - - - 
Poorly 

Differentiated 
SCC 

0.369 0.225 0.154 1.472 0.853 2.324 

Others -0.141 0.226 0.314 0.631 0.532 1.201 

Nucleus No - - - - - - 
Yes 0.415 0.221 0.054 1.512 0.945 2.284 

Stage 

I - - - - - - 
II 0.523 0.250 0.052 1.663 0.978 2.717 
III 1.242 0.273 <0.001 3.434 2.021 5.005 
IV 2.712 0.513 <0.001 18.678 6.567 51.361 

Type of 
Treatment 

Surgery + 
Radiotherapy - - - - - - 

Radiotherapy 0.201 0.255 0.421 1.221 0.738 2.025 
Duration of 
Radiotherap

hic 
Treatment 

>75days 0.741 0.232 0.001 2.257 1.402 3.435 
61-75 0.592 0.196 0.002 1.710 1.242 2.554 
<45 0.353 0.232 0.141 1.335 0.845 2.342 

46-60days - - - - - - 

Recurrence Yes 1.656 0.167 <0.001 5.249 3.751 7.216 
No - - - - - - 

 

Table 3 Values of -2log �L  for selected significant 
models in first step (Analysis I) 

 

Variable -2log �L
Value 

Difference 
Degrees 

of 
Freedom 

P value 

A+N+S+D+R 1617.585 130.443 11 <0.001 
A+N+S+D 1711.542 92 - - 
A+S+D+R 1643.291 2.21 1 NS 
S+R+A+N 1653.361 5.39 1 <0.05 
S+R+D+N 1622.819 9.031 1 <0.01 
A+N+D+R 1652.932 19.141 1 <0.01 

     
S+R+D+A 1629.695 - - - 

S+R+D 1641.702 95.01 1 <0.001 
S+R+A 1635.244 5.354 1 <0.05 
S+D+A 1614.523 63.645 1 <0.001 
R+D+A 1661.178 20.251 1 <0.001 

S+R+D+A 1639.846 - - - 
S+R+D+Place 1645.561 0.91 1 NS 

S+R+D+ Associated 
disease 1639.331 0.552 1 NS 

S+R+D+ 
Tumoursize 1635.902 2.956 1 NS 

S+R+D+ Histology 1647.276 1.498 1 NS 
S+R+D+Type of 

Treatment 1631.485 0.012 1 NS 
 

Where 
A-Age of the woman 
N-Change in nucleus 
S-Stage of the disease 
D-Duration of the radio theraphic treatment 
R-Recurrence during the follow-up period 
 

Table 4 Hazard Ratios from the Cox PH Model 
(Multi variable Analysis-I) 

 

Variable Paramete
r Estimate 

Standar
d Error 

P<Chi. 
Sq. 

Hazard 
Ratio 

95% 
Confidence 

Interval 
Lower 
Limit 

Upper 
Limit 

Recurrence 1.346 0.155 <0.001 3.357 3.121 5.181 
 

Duration of 
Radiotherap

hic 
Treatment 

46-60 
days - - - - - - 

≤45 0.363 0.246 0.147 1.431 0.75 2.311 
61-75 0.321 0.213 0.052 1.341 0.915 2.131 
≥75 0.361 0.242 0.051 1.471 0.871 2.612 

Age (in 
Years) 

<40 - - - - - - 
40-49 0.211 0.212 0.506 1.132 0.421 1.631 
50-59 0.391 0.140 0.102 1.381 0.826 2.274 
≥ 60 0.251 2.340 0.141 1.320 0.760 2.233 

 
Stage of 
Diseases 

I - - - - - - 
II 0.375 0.287 0.154 1.465 0.845 2.525 
III 0.871 0.281 0.001 2.532 1.401 4.432 
IV 1.954 0.525 <0.001 7.156 2.40 20.428 
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analysis I, again all the five variables recurrence of the 
disease, duration of radiotherapy treatment, stage of the 
disease at diagnosis, age of the woman and change in nucleus 
of the cell have been fitted as explanatory variables. The 
process of omitting each variable and assessing the 
significance level of each variable has been done. In Analysis 
II also, the changes in the nucleus of the cell has been found 
to be insignificant. Hence, among the remaining four 
variables, the significance level of each variable has been 
tested by omitting each variable at a time. The selected four 
variables are confirmed for their significance. The results are 
show in table 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As in analysis I, all the remaining variables of step I have 
been entered one by one. No significant contribution has been 
assessed by the remaining variables. Hence, all the four 
variables, recurrence of the disease during follow-up, stage of 
the disease, duration of the radiotheraphic treatement and age 
of the woman, have been considered for the final model.  

As in analysis, I the recurrence of the disease and stage of the 
disease have been found as significant variables. The other 
two variables, namely, age of the women and duration of the 
treatment have been found to be insignificant. This analysis II 
confirms that omitting of Stage IV patients has not altered the 
role of the other prognostic variables. The results are show in 
table 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
DISCUSSION 
 

Modelling the survival data for prognostic factors in cancer 
research is on the rise recently in India (Swaminathan, 2002). 
The main reason is the paucity of follow up information, 
which is so vital in survival studies. The first and for most 
assumption of the Cox proportional hazard model is that the 
censorings are at random. This has been verified. The 
verification of adequacy of the number of events that are 
being studied at all levels of factors is desirable. This has been 
taken care of by suitably classifying the levels of factors in 
such a way that at each level, there are adequate numbers of 
events. The stage of the disease has few sample sizes at level 
IV but proportion of the event is cent percent. Hence, analysis 

Table 5 Values of -2 log L  for univariate Models 
(Analysis -II) 

 

Variable -2log L
Value 

Difference 
Degrees 

of 
Freedom 

P 
value 

Null Model 1618.122 - - - 
Age 1603.579 141.512 3 0.002 

Place of Residence 1617.261 0.752 1 0.335 
Associated Disease 1617.321 0.692 1 0.343 

Tumour Size 1611.432 3.562 1 0.53 
Histology 1618.056 0.045 1 0.725 

Changes in Nucleus 1615.051 3.066 2 0.215 
Stage 1629.133 2.780 1 0.084 

Type of Treatment 1610.812 26.301 2 <0.001 
Duration 1605.036 13.054 3 <0.003 

Recurrence 1522.57 87.323 1 <0.001 
 

Table 6 Hazard Ratios from the Cox PH Model 
(Univariate Analysis-II) 

 

Variable Parameter 
Estimate 

Standard 
Error 

P<Chi 
Sq 

Hazard 
Ratio 

95% Hazard 
Ratio 

Upper 
Limit 

Lower 
Limit 

Age (in Years)

<40 - - - - - - 
40-49 0.372 0.216 0.062 1.380 0.945 2.231 
50-59 0.352 0.246 0.130 1.320 0.871 2.242 
>60 0.352 0.233 0.050 1.531 0.965 2.503 

Place Urban - - - - - - 
Rural 0.150 0.162 0.342 1.172 0.728 1.542 

Associated 
Disease Yes -0.546 0.326 0.071 0.542 0.251 1.062 

Tumour Size <4.0 - - - - - - 
>4.0 -0.056 0.165 0.824 0.954 0.685 1.328 

Histology 

SCC - - - - - - 
Poorly 

Different 
SCC 

0.342 0.274 0.216 1.331 0.521 2.395 

Others -0.252 0.224 0.234 0.755 0.466 1.239 

Nucleus No - - - - - - 
Yes 0.373 0.221 0.078 1.257 0.732 2.314 

Stage 
I - - - - - - 
II 0.517 0.260 0.041 1.593 0.967 2.775 
III 1.240 0.266 <0.001 3.471 2.021 5.972 

Type of 
Treatment 

Surgery + 
Radiotherapy - - - - - - 

Radiotherapy 0.226 0.245 0.378 1.271 0.738 2.112 

Duration of 
Radiotheraphic 

Treatment 

>75days 0.680 0.255 0.378 1.247 0.648 2.112 
61-75 0.569 0.198 0.005 1.740 1.175 2.573 
<45 0.253 0.249 0.262 1.312 0.691 2.163 

46-60days - - - - - - 

Recurrence Yes 1.70 0.179 <0.001 5.416 3.948 7.667 
No - - - - - - 

 

Table 7 Values of -2log L  for selected significant 
models in first step (Analysis II) 

 

Variable -2log L
Value 

Difference df P value 

R+S+D+A+N 1574.861 - - - 
R+S+A+N 1610.141 5.215 1 <0.05 
R+S+D+A 1586.932 2.057 1 NS 
R+S+D+N 1601.836 7.821 1 <0.01 
R+D+A+N 1608.740 13.724 1 <0.001 
S+D+A+N 1673.400 67.484 1 <0.001 

     
R+S+D+A 1576.893 - - - 

S+D+A 1676.374 68.391 1 <0.001 
R+D+A 1612.378 15.355 1 <0.001 
R+S+A 1602.006 5.013 1 <0.05 
R+S+D 1605.571 8.578 1 <0.01 

R+S+D+A 1596.993 - - - 
S+R+D+Place 1596.589 0.403 1 NS 

S+R+D+Associated disease 1596.032 0.951 1 NS 
S+R+D+Type of Treatment 1596.773 0.221 1 NS 

S+R+D+ Histology 1595.163 1.73 1 NS 
S+R+D+Tumoursize 1594.386 2.601 1 NS 

 
Where 
A-Age of the woman 
N-Change in nucleus 
S-Stage of the disease 
D-Duration of the radio theraphic treatment 
R-Recurrence during the follow-up period 
 

Table 8 Hazard Ratios from the Cox PH Model 
(Multi variable Analysis-II) 

 

Variable Parameter 
Estimate 

Standar
d Error 

P<Chi. 
Sq. 

Hazard 
Ratio 

95% 
Confidence 

Interval 
Lower 
Limit 

Upper 
Limit 

Recurrence 1.44 0.175 <0.001 4.765 3.215 6.520 

 
Duration of 

Radiotheraph
ic Treatment 

46-60 
days - - - - - - 

≤45 0.373 0.251 0.134 1.458 0.857 2.360 
61-75 0.357 0.204 0.061 1.331 0.857 2.129 
≥75 0.425 0.254 0.078 1.474 0.835 2.523 

Age (in 
Years) 

<40 - - - - - - 
40-49 0.121 0.212 0.565 1.120 0.83 1.661 
50-59 0.379 0.223 0.108 1.375 0.927 2.365 
≥ 60 0.320 0.239 0.216 1.263 0.737 2.119 

 
Stage of 
Diseases 

I 0.363 0.267 0.198 1.423 0.675 2.397 
II 0.867 0.238 0.001 2.630 1.395 4.525 
III 1.967 0.436 0.001 2.530 1.395 4.525 

 



International Journal of Current Advanced Research Vol 6, Issue 08, pp 5151-5161, August 2017 
 

 

5157 

II has been performed by omitting stage IV to ascertain the 
suitability of the Cox-regression model It confirms that the 
inclusion of the variable stage IV level would not alter the 
validity of the model The sample size considerations in 
concern, the overall sample size is 15 per variable. In general, 
the model with four variables is reliable to make a decision 
about the prognostic variables of the breast cancer survival. 
Here, the following four variables have been identified as 
significant prognostic factors of breast cancer survival for 
Cox-regression model: 
 

1. Recurrence of the disease 
2. Stage of the disease at diagnosis 
3. Duration of radiotheraphic treatment 
4. Age of the woman at diagnosis 

 

The purpose of applying the Cox-regression is mainly for 
comparison between the treatment regimens or comparison of 
dosage level of radiotherapy, their ultimate aim being 
identification of the prognostic factors of five-year survival 
probability of breast cancer patients. 
 

Summary 
 

In this Paper, the Cox-regression model building strategy has 
been discussed. Based on this, two analyses have been done, 
i.e., with stage IV covariate and without stage IV covariate. 
Finally, a model with four covariates, namely, recurrence of 
the disease, age of the woman, duration of radiotheraphic 
treatment and stage of the disease, has been identified as the 
prognostic factors of breast cancer survival after the 
completion of treatment. 
 

Statistical Analysis of Lung Cancer Data 
 

The following sets of data are used for real data examples 
come from the Veteran’s Administration lung cancer trial, 
listed in Kalbfleisch and Prentice (1980) and are shown in the 
Table 2.1. The time variable is survival in days, and the 
regressors are: 
 

1. 
1,          
2,                 

standard
Treatment

test


 


 

2. 

1,          
2,            

 
3,                   
4,                    

squamous
small cell

Cell type
adeno
large



 



 

3. Karnofsky score: 100-Normal, no evidence of 
disease 

 

90-Able to carry on normal activity 
80-Normal activity with effort 
70-Cares for self, unable to carry on normal activity or to do 
active work 
60-Requires occasional assistance but is able to care for most 
needs 
50-Requires considerable assistance and frequent medical 
care 
40-Disabled, requires special care and assistance 
30-Severely disabled, hospitalization indicated, although 
death not imminent 
20-Very sick, hospitalization necessary 
10-Moribund, fatal process progressing rapidly 
0-Dead 

1. Months from diagnosis. 
2. Age in years. 

3. 

0,          
 

1,        
no

Prior therapy
yes


 
  

For simplicity and the categories exhibit increasing risk, cell 
type as a numerical variable. A standard proportional hazards 
analysis shows that the Karnofsky score is extremely 
important, while cell type is also strongly significant. The 
estimated coefficients from the LASSO fit as a function of the 
standardized constraint parameter 

0
j

su







 
 

where j
0 are the unconstrained partial likelihood estimates. 

The value of u chosen by Generalized Cross-Validation 
(GCV) statistics suggested by Wahba (1980). To construct 
this statistic, we need a linear approximation to the LASSO 
estimate. We write the constraint ∑หߚ௝ห ≤ ∑	as ݏ ௝ଶߚ หߚ௝หൗ ≤  .ݏ
This latter constraint is equivalent to adding a Lagrangian 
penalty ߚ∑ߣ௝ଶ หߚ௝หൗ  to the log partial likelihood, with   0 
depending on s. Intuitively, these are equivalent since they 
both lead to a balance between fit, as measured by the log 
partial likelihood, and the value of ߣ ௝ଶߚ∑ หߚ௝หൗ . Using 
standard matrix manipulations, we may write the constrained 
solution ߚ෨ in step 3 in the form 
 

  1
 β T TX DX W X Dz


 


                    … (7) 

 

where,  
W = diag(Wj),  
 

1/            0
 

0                    

j j
i

if
W

otherwise

   


 

                   … (8) 

 

This expression does not give a numerically effective way of 
computing the LASSO estimate, but it is useful for assessing 
the complexity of the fit. Therefore we may approximate the 
number of effective parameters in the constrained fit ߚ෨ by 
 

    1
 T Tp s tr X X DX W X D

      
 

Letting ‘ls’ be the log-partial likelihood for the constrained fit 
with constraint s, we construct the GCV statistic 
 

 
  2

1
1 /

slGCV s
N N p s N




                       … (9)

 

 

Intuitively, the GCV criterion inflates the negative log partial 
likelihood by a factor that involves p(s), the effective number 
of parameters. Larger values of p(s) cause more inflation of 
the negative log partial likelihood. The model selected by 
GCV has a non-zero coefficient only for Karnofsky score, 
with a coefficient of -0.38, corresponding to a relative risk of 
0.53. It standard error is 0.076, computed by the technique as 
follows. 
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Use approximation of equ. (7) to yield an approximate 
method for obtaining standard errors for the LASSO 
estimates. In the notation of equ. (7), using standard partial 
likelihood theory that the variance of z is approximately D-1. 
Letting M denote the matrix that multiplies z in equ. (7), then 
the variance of ߚመ =  is approximately MD-1MT. Hence we ݖܯ
can obtain the approximate standard errors of ߚመ  from the 
square root of the diagonal of MD-1MT. The resulting 
coefficient estimates for backward stepwise selection in the 
standard Cox model yields the same single variable model, 
but with a coefficient of -0.56 (0.10) or a relative risk 0.55. 
The stepwise method refers to backward-forward stepwise 
selection as implemented in Scott Emerson’s S language 
function ‘coxrgrss’ with the default P-values to enter and 
remove of 0.05 and 0.10, respectively. Schwarz’s criterions 
also known as BIC to these data, this has the form minus log 
partial likelihood plus ‘k log(n)’ where k is the number of 
regressors in the model considered and n is the sample size. 
Searching over all subsets, the model that minimizes 
Schwarz’s criterion again contained only the Karnofsky score. 
Coefficient estimates for lung cancer example, as a function 

of the standardized constraint parameter 0/ | | .ju s  


 
The generalized cross-validation score is plotted against the 

standardized constraint parameter 0/ | | .ju s  


 using 
GCV plot is given in Fig. 1 and Fig. 2. For a detailed study 
refer to Wahba (1980). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A Simulation Study 
 

180 datasets each with 50 observations has been simulated 
from the exponential hazard model 

 

    | exp Tt x x                                  … (10) 

where  = (-0.33, -0.33, 0, 0, 0, -0.33, 0, 0, 0)T. 
 

The xi were each marginally standard normal, and the 
correlation between xi and xj was |i-j| with  = 0.5 and gave 
moderate to strong effects for the three regressors with non-
zero coefficients. Letting Σ be the population covariance 
matrix of the regressors. To investigate the accuracy of the 
procedure, with βj = 0.1 for all j and the median of the mean 

squared errors 
T

   
     

   

 
β β β β over 100 simulations for 

the model in equ. (10) and the results were shown in table 10, 
table 11 and table 12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig 1 

 

 
Fig 2 
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Table 9 Lung Cancer Data* 
 

Tr CT t x1 x2 x3 x4 
1 1 71 60 7 68 0 
1 1 410 71 4 62 10 
1 1 225 62 3 35 0 
1 1 125 62 9 62 10 
1 1 119 68 11 63 10 
1 1 10 19 5 48 0 
1 1 81 40 10 68 10 
1 1 111 81 28 69 0 
1 1 315 50 16 42 0 
1 1 100 78 5 70 0 
1 1 43 62 4 80 0 
1 1 8 39 57 62 10 
1 1 145 30 4 64 0 
1 1 26 81 9 54 10 
1 1 11 70 11 48 11 
1 2 30 60 3 62 0 
1 2 383 61 9 44 0 
1 2 3 41 2 34 0 
1 2 54 80 4 63 10 
1 2 13 61 4 55 0 
1 2 123 41 3 56 0 
1 2 97 60 5 68 0 
1 2 154 60 14 62 10 
1 2 60 30 2 65 0 
1 2 117 80 3 46 0 
1 2 16 30 4 53 10 
1 2 151 50 12 69 0 
1 2 22 60 4 67 0 
1 2 56 80 12 42 10 
1 2 21 40 2 54 10 
1 2 18 20 15 41 0 
1 2 139 80 2 63 0 
1 2 20 31 5 66 0 
1 2 31 74 3 65 0 
1 2 51 71 2 55 0 
1 2 286 60 25 66 10 
1 2 18 30 4 60 0 
1 2 51 60 1 67 0 
1 2 122 80 28 53 0 
1 2 27 60 8 62 0 
1 2 54 70 1 67 0 
1 2 7 50 7 72 0 
1 2 63 50 11 48 0 
1 2 392 40 4 68 0 
1 2 10 40 23 67 10 
1 3 8 20 19 61 10 
1 3 92 70 10 60 0 
1 3 35 40 6 62 0 
1 3 117 80 2 38 0 
1 3 132 80 5 50 0 
1 3 12 50 4 63 10 
1 3 162 80 5 64 0 
1 3 3 30 3 43 0 
1 3 95 80 4 34 0 
1 4 177 50 16 66 10 
1 4 162 80 5 62 0 
1 4 216 50 15 52 0 
1 4 553 70 2 47 0 
1 4 278 60 12 63 0 
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Liver data Example 
 

Non-Alcoholic cirrhosis of liver is a rare but fatal chronic 
disease, with a prevalence of about 50-cases-per-million 
population cited in the literature. The primary pathologic 
event appears to be the destruction of interlobular bile ducts, 
which may be mediated by immunologic mechanisms. The 
data were collected from Dharmapuri Medical College and 
hospital located in Dharmapuri district between July 2015 to 
May 2017, 158 cases were observed from the hospital. The 
variables in the data set are:  
 

N – Case number 
Y – No. of day’s registration and the earlier of death 

1,           
0,         

if Y is timetodeath
if timetocensoring




 


 

X1 = Age 

2

0,            
X

1,       
Male

Female


 


 

3

0,  
X presence of ascites 

1,  
no
yes


 


 

4

0,  
X presence of spiders 

1,  
no
yes


 


 

5

0,  
X presence of oedema but responded to diuretic treatment0.5,  

1,

no
yes

yes


 


 

X6 = Serum bilirubin (mg/dl) 
X7 = Serum cholesterol (mg/dl) 
X8 = Albumin (g/dl) 

 

1 4 12 40 12 68 10 
1 4 260 80 5 45 0 
1 4 200 80 12 41 10 
1 4 156 70 2 66 0 
1 4 182 90 2 62 0 
1 4 143 90 8 60 0 
1 4 105 80 11 66 0 
1 4 103 80 5 38 0 
1 4 250 70 8 53 10 
1 4 100 60 13 37 10 
2 1 999 90 12 54 10 
2 1 112 80 6 60 0 
2 1 87 80 3 48 0 
2 1 231 50 8 52 10 
2 1 244 50 1 70 0 
2 1 996 70 7 52 10 
2 1 115 70 3 61 0 
2 1 1 20 22 65 10 
2 1 588 60 4 58 0 
2 1 390 90 2 63 0 
2 1 34 30 6 65 0 
2 1 25 20 36 65 0 
2 1 359 70 13 59 0 
2 1 467 90 2 63 0 
2 1 202 80 28 51 10 
2 1 1 50 7 35 0 
2 1 30 70 11 63 0 
2 1 44 60 13 73 10 
2 1 285 90 2 51 0 
2 1 15 50 13 40 10 
2 2 25 30 2 68 0 
2 2 104 70 22 39 10 
2 2 21 20 4 72 0 
2 2 14 30 2 65 0 
2 2 87 60 2 62 0 
2 2 2 40 36 45 10 
2 2 21 30 9 54 10 
2 2 7 20 11 68 0 
2 2 25 60 8 46 0 
2 2 99 70 3 74 0 
2 2 8 80 2 68 0 
2 2 99 85 4 63 0 
2 2 68 70 2 71 0 
2 2 24 70 2 70 0 
2 2 95 70 1 62 0 
2 2 80 50 17 71 0 
2 2 51 30 87 59 10 
2 2 29 40 8 67 0 
2 3 28 40 2 62 0 
2 3 19 40 5 68 10 
2 3 85 99 3 58 0 
2 3 31 80 3 37 0 
2 3 54 60 5 63 0 
2 3 90 60 22 50 10 
2 3 54 60 3 45 0 
2 3 73 60 3 70 0 
2 3 8 50 5 66 0 
2 3 36 70 8 63 0 
2 3 48 10 4 81 0 
2 3 7 40 4 57 0 
2 3 140 70 3 65 0 
2 3 186 90 3 62 0 
2 3 84 80 4 62 10 
2 3 19 50 10 41 0 
2 3 45 40 3 69 0 
2 3 80 40 4 63 0 
2 4 52 60 4 46 0 
2 4 164 70 15 68 10 
2 4 19 30 4 38 10 
2 4 53 60 12 69 0 
2 4 15 30 5 63 0 
2 4 43 60 11 46 10 
2 4 340 80 10 64 10 
2 4 133 75 1 66 0 
2 4 111 60 5 64 0 
2 4 231 70 18 68 10 
2 4 378 80 4 65 0 
2 4 49 30 3 39 0 

 

Table 10 Mean squared errors (MSE) over 50 
simulations (a few large effects) 

 

Method Median MSE (SE) Average no. of zero coefficients 
Null 0.41 (-) 8.8 

Full model 0.78 (0.11) 0.0 
Stepwise 0.64 (0.10) 5.2 
LASSO 0.21 (0.06) 6.3 

 

Table 11 Mean squared errors (MSE) over 50 
simulations (many small effects) 

 

Method Median MSE (SE) Average no. of zero coefficients 
Null 0.17 (-) 9.1 

Full model 0.59 (0.02) 0.1 
Stepwise 0.54 (0.03) 5.6 
LASSO 0.13 (0.00) 7.8 

 

Table 12 Estimated and Actual Standard errors for 
simulated example 

 

V
ar

ia
bl

e 

u = 0.7 u = 0.3 

Mean 
Coefficient Mean ࡱࡿ෢  Actual SE Mean 

Coefficient Mean ࡱࡿ෢  Actual SE 

1 -0.44 0.15 0.18 -0.30 0.14 0.16 
2 -0.46 0.11 0.24 -0.35 0.16 0.17 
3 -0.05 0.07 0.16 -0.02 0.02 0.05 
4 0.04 0.03 0.10 0.00 0.00 0.01 
5 0.01 0.04 0.12 -0.01 0.01 0.05 
6 -0.42 0.12 0.20 -0.23 0.12 0.11 
7 -0.07 0.05 0.16 -0.02 0.01 0.02 
8 0.00 0.07 0.15 0.00 0.01 0.02 
9 -0.02 0.10 0.10 0.00 0.00 0.01 
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X9 = Alkaline phosphate (IU/liter) 
X10 = SGOT (IU/ml) 
X11 = Triglycerides (mg/dl) 
X12 = Platelet count; coded value is number of platelets per 
cubic meter (mg/dl) 
X13 = Prothrombin time (in sec.) 
X14 = Histological state of disease, graded 1, 2, 3 or 4. 
 

The result appears in table 5.5, for the full model, stepwise 
and LASSO. The stepwise method is implemented for using 
the Scott Emerson’s S language function ‘coxgrss’ (refer to 
the website: lib.stat.cmu.edu). the model is fitted with 14 
variables. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The estimated regression coefficients together with GCV 
statistics is computed from equ. (7) and equ. (8). The standard 
error for the LASSO estimates can be obtained by using the 
approximately given in the equ. (7). The approximation can 
be done using standard partial likelihood theory that the 
variance of z is approximately D-1. Letting M denote the 
matrix that multiplies z in equ. (7), then the variance of 
መߚ =  is approximately MD-1MT. Hence we can obtain the ݖܯ
approximate standard errors of ߚመ  from the square root of the 
diagonal of MD-1MT. For data simulation, the procedure 
given in section 2 can be used. From the table 10, table 11 and 
table 12; the LASSO outperforms the full and stepwise 
models by shrinking the coefficients almost all of the way to 
zero. From the analysis of liver data shown in table 13, the 
GCV procedure gave ݑො = 0.59 for the standardized LASSO 
parameter and the resulting model from the lasso looks 
similar to the stepwise model and full model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The LASSO technique for variable selection in the Cox model 
seems a worthy competitor to stepwise selection. It is less 
variable than the stepwise approach and still yields 
interpretable models. The LASSO method requires initial 
standardization of the regressors, so that the penalization 
scheme is fair to all regressors. The LASSO clearly 
outperforms stepwise selection, and picks approximately the 
correct number of zero coefficients. The proposed 
methodology cited in this paper has focused on fixed 
covariates analysis. But one can incorporate time dependent 
covariate without any new difficulty. 
 

CONCLUSION 
 

In this Paper, Semi and non semi parametric models for 
reliability analysis has been discussed. Based on this, the 
analyses has been carried out. Further it is evident that, a 
model with four covariates, namely, recurrence of the disease, 
age of the woman, duration of radiotheraphic treatment and 
stage of the disease, has been identified as the prognostic 
factors of breast cancer survival after the completion of 
treatment. 
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Table 13 Results for Liver data 
 

Variables
Full Stepwise LASSO 

Co- 
efficient SE Z- 

score 
Co- 

efficient SE Z- 
score 

Co- 
efficient SE Z- 

Score 
1 0.27 0.13 2.41 0.30 0.08 3.11 0.18 0.80 1.80 
2 -0.13 0.10 -0.11 - - - -0.02 0.01 -0.31 
3 0.02 0.11 0.20 - - - 0.02 0.07 0.53 
4 0.06 0.10 0.43 - - - 0.03 0.04 0.36 
5 0.28 0.11 2.56 0.20 0.06 3.50 0.12 0.10 1.56 
6 0.31 0.12 3.20 0.32 0.06 4.20 0.30 0.12 2.81 
7 0.11 0.11 1.05 - - - 0.01 0.02 0.25 
8 -0.30 0.12 -2.45 -0.24 0.10 -2.51 -0.30 0.12 -2.30 
9 0.00 0.09 0.02 - - - 0.00 0.00 0.00 
10 0.24 0.10 2.17 0.22 0.11 2.29 0.10 0.09 1.09 
11 -0.08 0.06 -0.70 - - - 0.01 0.00 0.00 
12 0.07 0.11 0.70 - - - 0.01 0.00 0.00 
13 0.21 0.11 2.10 0.20 0.14 2.35 0.07 0.12 1.02 
14 0.35 0.13 2.61 0.35 0.16 3.05 0.21 0.08 2.34 

 

Appendix  
 

S.No Age Place Associated 
disease 

Tumour 
Size Histology Nucleus Stage Type of 

Treatment 
Duration of 

Radiotherapict 
1 46 R Y <4.0 PDSCC Y II R 42 
2 38 R Y <4.0 PDSCC Y III R 40 
3 62 R Y <4.0 SCC Y IV R 86 
4 72 R Y <4.0 SCC Y IV R 90 
5 83 R Y <4.0 SCC Y IV R 87 
6 61 R Y <4.0 PDSCC Y III R 90 
7 49 U Y >4.0 PDSCC Y III S+R 62 
8 50 R Y <4.0 PDSCC Y IV S+R 60 
9 59 R Y <4.0 SCC N III R 36 
10 72 R Y >3.2 SCC Y IV R 35 
11 79 R Y <4.0 OTHERS Y IV R 36 
12 80 R Y <4.0 SCC N II R 35 
13 83 R Y <4.0 SCC Y II R 34 
14 72 U Y >4.0 PDSCC Y IV R 42 
15 45 R Y <4.0 PDSCC Y IV R 54 
16 72 U Y >3.2 SCC Y II R 36 
17 57 U Y <4.0 PDSCC Y III R 42 
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Appendix  
 

S.No Age Place Associated 
disease 

Tumour 
Size Histology Nucleus Stage Type of 

Treatment 
Duration of 

Radiotherapict 
    18 58 U Y <4.0 PDSCC Y III R 40 

19 60 U Y <4.0 OTHERS Y III S+R 46 
20 59 R Y <4.0 SCC Y II R 52 
21 72 R Y >4.0 SCC Y IV R 59 
22 48 R Y >4.0 OTHERS Y III R 63 
23 53 R Y <4.0 SCC Y IV R 60 
24 57 R Y <4.0 OTHER Y IV R 63 
25 69 R Y <4.0 OTHER Y IV R 55 
26 67 R N <4.0 SCC Y III R 45 
27 63 R Y >4.0 OTHER Y I R 76 
28 52 U Y >4.0 SCC Y II R 79 
29 45 R Y <4.0 SCC Y IV R 33 
30 39 U Y <4.0 OTHER Y IV R 40 
31 42 U Y <4.0 SCC Y IV R 29 
32 40 R Y <4.0 SCC Y III R 26 
33 32 R Y <4.0 SCC Y II R 37 
34 59 U Y <4.0 OTHER Y III R+S 22 
35 58 R Y <4.0 OTHER Y II R 32 
36 61 R Y <4.0 OTHER Y III R 45 
37 69 R Y >4.0 SCC Y II R 67 
38 67 R Y <4.0 SCC Y III R 56 
39 55 R Y <4.0 SCC Y II R 43 
40 46 R Y <4.0 OTHER Y III R 55 
41 56 R Y <4.0 SCC Y IV R 35 
42 46 R Y <4.0 PDSCC Y II R 42 
43 38 R Y <4.0 PDSCC Y III R 40 
44 62 R Y <4.0 SCC Y IV R 86 
45 72 R Y <4.0 SCC Y IV R 90 
46 83 R Y <4.0 SCC Y IV R 87 
47 61 R Y <4.0 PDSCC Y III R 90 
48 49 U Y >4.0 PDSCC Y III S+R 62 
49 50 R Y <4.0 PDSCC Y IV S+R 60 
50 59 R Y <4.0 SCC N III R 36 
51 72 R Y >3.2 SCC Y IV R 35 
52 79 R Y <4.0 OTHERS Y IV R 36 
53 80 R Y <4.0 SCC N II R 35 
54 83 R Y <4.0 SCC Y II R 34 
55 72 U Y >4.0 PDSCC Y IV R 42 
56 45 R Y <4.0 PDSCC Y IV R 54 
57 72 U Y >3.2 SCC Y II R 36 
58 57 U Y <4.0 PDSCC Y III R 42 
59 58 U Y <4.0 PDSCC Y III R 40 
60 60 U Y <4.0 OTHERS Y III S+R 46 
61 59 R Y <4.0 SCC Y II R 52 
62 72 R Y >4.0 SCC Y IV R 59 
63 48 R Y >4.0 OTHERS Y III R 63 
64 53 R Y <4.0 SCC Y IV R 60 
65 57 R Y <4.0 OTHER Y IV R 63 
66 69 R Y <4.0 OTHER Y IV R 55 
67 59 U Y <4.0 OTHER Y III R+S 22 
68 58 R Y <4.0 OTHER Y II R 32 
69 61 R Y <4.0 OTHER Y III R 45 
70 69 R Y >4.0 SCC Y II R 67 
71 67 R Y <4.0 SCC Y III R 56 
72 55 R Y <4.0 SCC Y II R 43 
73 46 R Y <4.0 OTHER Y III R 55 
74 56 R Y <4.0 SCC Y IV R 35 
75 50 R Y <4.0 OTHER Y II R 45 
76 45 R Y <4.0 SCC Y II R 39 
77 59 R Y <4.0 OTHER Y III R 27 
78 63 R Y <4.0 SCC Y II R 65 
79 34 R Y <4.0 OTHER Y III R 55 
80 30 U Y >4.0 SCC Y II R 50 
81 45 R Y <4.0 SCC Y II R 65 
82 54 R Y <4.0 SCC Y III R 60 
83 59 U Y <4.0 SCC Y IV R 54 
84 67 R N <4.0 SCC Y III R 45 
85 63 R Y >4.0 OTHER Y I R 76 
86 52 U Y >4.0 SCC Y II R 79 
87 45 R Y <4.0 SCC Y IV R 33 
88 39 U Y <4.0 OTHER Y IV R 40 
89 42 U Y <4.0 SCC Y IV R 29 
90 40 R Y <4.0 SCC Y III R 26 
91 32 R Y <4.0 SCC Y II R 37 
92 72 R Y >3.2 SCC Y IV R 35 
93 79 R Y <4.0 OTHERS Y IV R 36 
94 80 R Y <4.0 SCC N II R 35 
95 83 R Y <4.0 SCC Y II R 34 
96 72 U Y >4.0 PDSCC Y IV R 42 
97 45 R Y <4.0 PDSCC Y IV R 54 
98 72 U Y >3.2 SCC Y II R 36 
99 57 U Y <4.0 PDSCC Y III R 42 
100 58 U Y <4.0 PDSCC Y III R 40 

 


