

AN ANALYSIS WITH PETRINET AND TIMED AUTOMATA WITH AUTOMATION

Department of Computer

A R T I C L E I N F O

 INTRODUCTION

Software testing plays a crucial role in the testing of
application to ensure defect free application. Defects are
deviation away from product specification .Reduction of
defects and efficient methodology for coverage of test cases
has been the research topic for discussion over years and still
conclusive results are not obtained. The research questions
include

1. How to ensure with a methodology which assist
verification to validation in guaranteeing sufficient
coverage

2. Automation of software testing reduces time and
cost and how to automate with model based testing

3. Which model can be taken for analysis and how the
coverage is analyzed.

The answer to the above approaches lies in the development
of a model with components of having common interfaces,
functionality, inputs and outputs with compatible environment
from the requirements manual. The vast requirement manual
can be composed into functionality and dependencies between
components can be established. The output obtained is the
Composable and the compatible model.
a system design principle that deals with the inter
relationships of components. A highly composable system

International Journal of Current Advanced Research
ISSN: O: 2319-6475, ISSN: P: 2319 –
Available Online at www.journalijcar.org
Volume 6; Issue 5; May 2017; Page No.
DOI: http://dx.doi.org/10.24327/ijcar.2017.

Article History:

Received 17th February, 2017
Received in revised form 4th March, 2017
Accepted 25th April, 2017
Published online 28th May, 2017

Key words:

Coverage, Automation, Model, Petrinet, Timed
Automata

Copyright©2017 Smitha.P.S and N.Sankar Ram.
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

*Corresponding author: N .Sankar Ram
Department of Computer Science and Engineering,
Velammal Engineering College, Anna University , Tamil
Nadu ,India

AN ANALYSIS WITH PETRINET AND TIMED AUTOMATA WITH AUTOMATION
IN MOBILE APPLICATIONS

Smitha.P.S and N.Sankar Ram*

Department of Computer Science and Engineering, Velammal Engineering College,
Anna University, Tamil Nadu, India

 A B S T R A C T

Model based testing is the current research trend in developing abstract model for modern
application. Although many application is tested with different models, there is no concrete
complete methodology from verification to validation in reduc
ensuring effectiveness in testing. This paper suggest a concrete approach in developing a
complete model with two model based approaches of petrinets and timed automata with
automation and analysis of test coverage.

testing plays a crucial role in the testing of
application to ensure defect free application. Defects are
deviation away from product specification .Reduction of
defects and efficient methodology for coverage of test cases

iscussion over years and still
conclusive results are not obtained. The research questions

How to ensure with a methodology which assist
verification to validation in guaranteeing sufficient

Automation of software testing reduces time and
cost and how to automate with model based testing
Which model can be taken for analysis and how the

The answer to the above approaches lies in the development
of a model with components of having common interfaces,

puts and outputs with compatible environment
from the requirements manual. The vast requirement manual
can be composed into functionality and dependencies between
components can be established. The output obtained is the

 Composability is
principle that deals with the inter-

relationships of components. A highly composable system

provides recombinant components that can be selected and
assembled in various combinations to satisfy specific user
requirements. In information systems, the essential features

That make a component composable are that it be

 self-contained (modular
independently – note that it may cooperate with other
components, but dependent components are
replaceable

 stateless: it treats each request as an independent
transaction, unrelated to any previous
request. Stateless is just one technique;
state and transactional
composable, but with greater difficulty.

It is widely believed that composable systems are
more trustworthy than non-composable systems because it is
easier to evaluate their individual parts
system behavioural properties can be checked by initiating a
finite automation and Petrinets. Safety and liveness properties
are checked. Model checking and testing are two areas with a
similar goal: to verify that a system satisfies a property
[6]. Model-based testing (MBT) relies on models of a system
under test and/or its environment to derive test cases for the
system [7]. Though object oriented programs are helpful in
programming large systems, testing of
much more effort and time [8]. Creating a finite Automation
involves states and transition between states. Petri nets was
developed from the work of Carl Adam Petri in 1962 who in
his doctoral thesis ``Kommunikation mit Automaten,''
[Communication with automata], gave the theory of

International Journal of Current Advanced Research
– 6505, Impact Factor: SJIF: 5.995

www.journalijcar.org
2017; Page No. 3708-3712

http://dx.doi.org/10.24327/ijcar.2017.3712.0351

. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

of Computer Science and Engineering,
Anna University , Tamil

AN ANALYSIS WITH PETRINET AND TIMED AUTOMATA WITH AUTOMATION

, Velammal Engineering College,

Model based testing is the current research trend in developing abstract model for modern
application. Although many application is tested with different models, there is no concrete

rom verification to validation in reducing cost and time for
effectiveness in testing. This paper suggest a concrete approach in developing a

complete model with two model based approaches of petrinets and timed automata with

provides recombinant components that can be selected and
assembled in various combinations to satisfy specific user
requirements. In information systems, the essential features

onent composable are that it be

modular): it can be deployed
note that it may cooperate with other

components, but dependent components are

it treats each request as an independent
transaction, unrelated to any previous

is just one technique; managed
transactional systems can also be

sable, but with greater difficulty.

It is widely believed that composable systems are
composable systems because it is

e their individual parts [1]. A composable
system behavioural properties can be checked by initiating a
finite automation and Petrinets. Safety and liveness properties
are checked. Model checking and testing are two areas with a

t a system satisfies a property [5]
based testing (MBT) relies on models of a system

under test and/or its environment to derive test cases for the
[7]. Though object oriented programs are helpful in

programming large systems, testing of such systems requires
[8]. Creating a finite Automation

involves states and transition between states. Petri nets was
developed from the work of Carl Adam Petri in 1962 who in
his doctoral thesis ``Kommunikation mit Automaten,'' [3][4]
[Communication with automata], gave the theory of

Research Article

This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Current Advanced Research Vol 6, Issue 05, pp 3708-3712, May 2017

3709

communication between asynchronous components of a
computer system. His dissertation was a theoretical
development of the basic concepts and was particularly
concerned with relationships between events from where Petri
nets were developed. Petrinets- a graphical and mathematical
modeling tool. Petrinets are a promising tool for describing
and studying information processing systems that are
characterized as being concurrent, synchronous, distributed,
parallel, deterministic and/or stochastic [9]. Finite state
machines and petrinets are one among the various conceptual
and computational models that have been widely used in
analyzing diverse web service research areas [10]. Due to the
high number and diversity of users, new testing approaches
are necessary to reduce the occurrence of faults and ensure
better quality in mobile applications [11]. Petrinets and Timed
automata are constructed with automation and formal
verification done to ensure all states are reachable in mobile
safety application. Automatically generating effective test
suites promises a significant impact on testing practice by
promoting extensively tested software within reasonable
effort and cost bounds [12]. Sequence diagram is generated
from the automated model which generates test cases and
ultimately the coverage of test cases.

The test cases coverage illustrates petrinets gain edge over
timed automata in a set of applications. Apart from
introduction in Section I, the rest of the paper is organised as
follows. Section 2 describes process for verification and
validation and section 3 describes composable model and
section 4 describes model with petrinets and timed Automata
and section 5 describes results and conclusion.

Process for Verification and validation

For effective testing process there needs to be a complete
scenario which specifies the component to be composed from
requirements manual and model being generated with
automated tool and test sequences generated which are
checked for test coverage as demonstrated in fig 1

Composable Model for Mobile Safety Application

Fig 2 represents a domain model with composable
requirements with common inputs and interfaces and output
from one composable node to another being grouped into the
above models. The requirements can be done by grouping the
requirements under each composable node which are critical
to the working of software.

Models with Petrinets and Finite State Machine

Generation of Extended Finite State Machine (EFSM)
EFSM

is an extension of the original FSM. The expressiveness
power of EFSM makes it capable of modeling system
specification that include variables and operations based on
variable values. In an FSM, the transition is associated with a
set of inputs and a set of output functions, whereas in an
EFSM model, the transition will be fired if the predicate
conditions are all satisfied, moving the machine from the
current state to the next state and performing the specified
data operations.

An EFSM is 5-tuple = (S, I, O, T, V), such that

• S is a finite set of states, • I is a set of inputs symbols, •
O is a set of output symbols, • T is a set of transitions, • V
is a set of variables, and
State changes: The transition t in the set T is a 6-tuple:
t = T(st, ´ st, it, ot, Pt, At) where,
• st is the current state,
•´ st is the next state,
 • it is the input,
• ot is the output,
 • Pt(~v) is predicates on the current variable values, and
• At(~v) is the action on variable values.

Fig 3 represents the flow of states from S1 to state S2 on the
input from the user interface screen of for giving input(1) and
for not giving(0). From state S2 to S3 based on the input from
the user interface to goes for mapping and then from S3 to S4
on searching with the database. The transitions are from S1 to
S3 on giving the input from the user interface screen to search
for items in the database.

Fig 1 Process for effective testing model

Composable and Compatible

Components

Model based Automation with

petrinets and timed Automata

Test Sequence Generation

Test coverage

Fig 2 A composable model

User

interface

Google

Map

Data

Retrieval

Exceptions

and Stack

Trace

Touch

Panel

Event

Handling

Fig 3 Extended finite State Machine for Mobile Application

S1 S2 S3 S4

0/1 map search

An Analysis With Petrinet And Timed Automata With Automation In Mobile Applications

 3710

Safety checking

Safety checking can be done with reachability and livveness
property based on the input given. If all states are reachable
and live and it leads to an end state then that input is reachable
and leading to an safe state otherwise it leads to an unsafe
state.

Model checking for Extended finite State Machine

import net.s1.AbstractListener;
import net.s1.Action;
import net.s1.FsmModel;
import net.s1.RandomTester;
import net.s1.Tester;
import net.s1.Transition;
import net.s1.VerboseListener;
import net.s1.coverage.CoverageMetric;
import net.s1.coverage.TransitionCoverage;

/** Simple example of a finite state machine (FSM) for
testing.
 */
public class FSM implements FsmModel
{
 private int state = 0; // 0..2

 public FSM()
 {
 state = 0;
 }
 public String getState()
 {
 return String.valueOf(state);
 }

 public void reset(boolean testing)
 {
 state = 0;
 }
 public boolean action1Guard() { return state == 2; }
 public @Action void action1()
 {
 // System.out.println("action0: " + state + " --> 0");
 state = 0;
 }
 public boolean action1Guard() { return state == 2; }
 public @Action void action1()
 {
 // System.out.println("action1: " + state + " --> 1");
 state = 1;
 }

 public boolean action2Guard() { return state == 0; }
 public @Action void action2()
 {
 // System.out.println("action2: " + state + " --> 2");
 state = 2;
 }

 public boolean actionNoneGuard() { return state != 1; }
 public @Action void actionNone()
 {
 // leave state the same.

 // System.out.println("actionNone: " + state + " --> " +
state);
 }
 public static void main(String args[])
 {
 // create our model and a test generation algorithm
 Tester tester = new RandomTester(new FSM());

 // build the complete FSM graph for our model, just to
ensure
 // that we get accurate model coverage metrics.
 tester.buildGraph();

 // set up our favourite coverage metric
 CoverageMetric trCoverage = new TransitionCoverage();
 tester.addCoverageMetric(trCoverage);

 // ask to print the generated tests
 tester.addListener("v1", new
V1Listener(tester.getModel()));

 // generate a small test suite of 20 steps (covers 4/5
transitions)
 tester.generate(50);

 tester.getModel().printMessage(trCoverage.getName() + "
was "
 + trCoverage.toString());
 }
}

Transition coverage

done (0, actionNone, 0)
done (0, action2, 2)
done (2, action1, 1)
done Forced reset(true)
done (0, action2, 2)
done (2, action0, 0)
done (0, action2, 2)
done (2, action0, 0)
done (0, actionNone, 0)
done (0, actionNone, 0)
done (0, actionNone, 0)
done (0, action2, 2)
done (2, action0, 0)
done Random reset(true)
done (0, actionNone, 0)
done (0, actionNone, 0)
done (0, action2, 2)
done (2, action0, 0)
done (0, action2, 2)
done Random reset(true)
Transition Coverage was 4/5

The source code generated for the above state transi
tion diagram represents the complete test coverage details.

Generation of Petrinet Model

Petri net constitutes places and transitions; the places to which
a transition ends called output places and the places from
which a transition starts are called the inputs places to the
transitions. Places may contain a number of marks, called
tokens. The distribution of tokens over the places represents a
configuration of the net called the marking. A Petri net may
fire whenever there are sufficient number of tokens at each

International Journal of Current Advanced Research Vol 6, Issue 05, pp 3708-3712, May 2017

3711

the input places and, firing implies that these tokens
consumed and one token is placed each of the output places.
Petri nets can be nondeterministic, i.e., when multiple
transitions are enabled simultaneously, any one of them may
fire and a firing is atomic, i.e., a single non-interruptible
event. Since the behaviour of firing is nondeterministic and
there may be present multiple tokens anywhere in the Petri net
or even in the same place so, Petri net is suited for modelling
concurrent behaviour of distributed systems. To analyse the
dynamic behaviour of a Petri net modelled systems in
reference with states and state changes, each place may hold
none or positive integral number of tokens. The condition
associated with place is true or false is indicated by the
presence or absence of a token at that place. A Petri net is
formally defined[2] as a 5-tuple N = (P, T, I, O, M0), where
(1) P = {p 1 , p 2 , …, p m } is a finite set of places; (2) T = {t
1 , t 2 , …, t n } is a finite set of transitions, P ∪ T ≠ ∅, and P
∩ T = ∅; [4] (3) I: P × T → N is an input function that defines
directed arcs from places to transitions, where N is a set of
nonnegative integers; (4) O: T × P → N is an output function
that defines directed arcs from transitions to places; and (5)
M0 : P → N is the initial marking.

UI-User Interface
M1-Maps
D1-Data Retrieval
E1-Exceptions

RESULTS

Petrinets

Time complexity = ∑��(�tt+Tpt)
Where Ttt is the time for token transition
 Tpt is the time for real transition
Space complexity=∑Pi(Sst+Sss+Sst)

Where Sst is the storage token for process tokens
 Sss is the storage token for states and their details
 Sst is the storage token for transition and their details
Timed Automata

Time complexity = ∑��(�tt)
Where Ttt is the time for token transition
Space Complexity=∑Pi(Sss+Sst)
Where Sss is the storage token for states and their details
 Sst is the storage token for transition and their details

CONCLUSION

Although many models exist for model based testing,
petrinets and timed automata are relevant to many modern
applications and use of automated tools largely reduce the
cost and time for testing. Test coverage being done on both
model shows petrinets have an edge over timed automata in
coverage of test cases.

References

1. Peter G. Neumann (2004). 'Principled Assuredly
Trustworthy Composable Architectures' (Report).

2. http://bluehawk.monmouth.edu/~jwang/Ch024.pdf.
3. James L. Peterson, Petri Net Theory and the

Modelling of Systems, Prentice-Hall, Englewood
Cliffs, New Jersey, (April 1981), 290 pages.
Translated into Russian and Japanese. ISBN 0-13-
661983

4. James L. Peterson, An Introduction to Petri Nets,
Proceedings of the National Electronics Conference,
Volume 32, (October 1978).

5. Gaudel, M.-C., Lassaigne, R., Magniez, F. and de
Rougemont, M. (2013) Some Approximations in
Model Checking and Testing. arXiv: 1304.5199.

6. Soliman, D.; Thramboulidis, K.; Frey, G.:
Transformation of Function Block Diagrams to
UPPAAL Timed Automata for the Verification of
Safety Applications. Annual Reviews in Control 36
(2012), pp. 338-345.

7. Utting, M., Pretschner, A. and Legeard, B. (2012) A
Taxonomy of Model-Based Testing Approaches.
Software Testing, Verification and Reliability, 22,
297-312.

8. Vipin Kumar K S, Sheena Mathew, (2015), Model
Based Distributed Testing of Object Oriented
Programs, Elsevier, pp 859-866

9. Tadoa Muarata(1989), Petrinets: Properties, Analysis
and Application, Proceedings of IEEE, vol 77,no.4

10. Thirumaran.M, Dhavachelvan.P, Aishwarya.D,
K.Rajakumarid (2013), Conventional Usage of finite
state machine over petrinet in webservice change
management framework, Elsevier, pp 99-109

11. Guilherme de Cleva Farto, Andre Takeshi Endo,
Evaluating the Model-Based Testing Approach in the
Context of Mobile Applications, Elsevier, pp 3-21

12. Pietro Braione, Giovanni Denaro, Andrea Mattavelli,
Mattia Vivanti, Ali Muhammad(2013), “Software

Fig 3 A petrinet Model

S1 S2 S3 S4

UI D1 M1
E1

safe

Transition
Transition

80

95

10
15

10

17

0

10

20

30

40

50

60

70

80

90

100

Timed Automata Petrinets

Transition coverage

Execution Time

Space complexity

An Analysis With Petrinet And Timed Automata With Automation In Mobile Applications

 3712

testing with code-based test generators: data and
lessons learned from a case study with an industrial
software component”, software quality journal,
springer

13. Smitha P.S and Sankar Ram.N 2014 “A Framework
for Safe Composable Testing Model For Multiple
application Testing environment”, J. of Theoretical
and Applied Information InformationTechnology.
Vol 63(2): 292-297

How to cite this article:

Smitha .P.S and N.Sankar Ram (2017) ' An Analysis With Petrinet And Timed Automata With Automation In Mobile
Applications', International Journal of Current Advanced Research, 06(05), pp. 3708-3712.
DOI: http://dx.doi.org/10.24327/ijcar.2017.3712.0351
