

AUTHENTIC TECHNIQUES OF AUTHENTICATION IN MICROSERVICES

Shagufta N. Shaikh

1Department of Computer Engineering,
2Department of Computer Engineering & IT, College of Engineering Pune, Pune

A R T I C L E I N F O

INTRODUCTION

The rudimentary approach for developing software has been
the monolithic way. Monolithic approach is still good for
small scale teams and projects, nevertheless once scalability,
flexibility and other requirements like fast development, short
time to market, wider team alliance, and so on becomes
gradually critical to accomplish business competitiveness,
monolithic halts being profitable. This is where the
Microservices architecture comes to rescue. Microservices is
responsible for an intensive, scoped and modular tactic for
application design. Microservices are small, autonomous
services that work together. [1] It can be well elaborated using
keywords: ‘Faster development and Speed to production’.
Microservices are deceptively termed to be code of limited
length. Conversely, microservices are a piece of code which
performs a single task and performs it soundly. They are
independent in failure i.e. failure of a single component does
not force the entire system to breakdown at once. The term
micro indicates the services to be lightweight and which
cannot be further divided into sub tasks and performs one task
solely with minimal dependency on other services. They are
independently scalable as well. The most perplexing part of
microservices is defining the granularity of the services.

Security in microservices is one of the least explored topics.
This paper explores the various vulnerabilities in security and
also presents the various methods deployed for providing
authentication and authorization in microservi
microservices depends on the idea of loose coupling and high

International Journal of Current Advanced Research
ISSN: O: 2319-6475, ISSN: P: 2319 –
Available Online at www.journalijcar.org
Volume 6; Issue 4; April 2017; Page No.
DOI: http://dx.doi.org/10.24327/ijcar.2017.

Article History:

Received 19th January, 2017
Received in revised form 10th February, 2017
Accepted 22nd March, 2017
Published online 28th April, 2017

Key words:

Microservices, OAuth 2.0, OpenID Connect

Copyright©2017 Shagufta N. Shaikh and Sunil B. Mane
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

*Corresponding author: Shagufta N. Shaikh
Department of Computer Engineering, College of
Engineering Pune, Pune – 411005

AUTHENTIC TECHNIQUES OF AUTHENTICATION IN MICROSERVICES

Shagufta N. Shaikh1 and Sunil B. Mane2

Department of Computer Engineering, College of Engineering Pune, Pune
Department of Computer Engineering & IT, College of Engineering Pune, Pune

 A B S T R A C T

Microservices is the catch word of the town nowadays. The microservices are small,
autonomous services doing a single task, and performing it well. However various concerns
such as security in microservices are not explored yet. This paper presents a comparison of
the existing protocols such as 2-way SSL, HMAC, SAML, etc. used for authentication and
authorization of the end users by the service providers. It also explores the concerns where
they lack and presents a model implementing OpenID Connect. It presents a proper
comparison to propose OpenID Connect to be best of the lot.

The rudimentary approach for developing software has been
the monolithic way. Monolithic approach is still good for
small scale teams and projects, nevertheless once scalability,
flexibility and other requirements like fast development, short

t, wider team alliance, and so on becomes
gradually critical to accomplish business competitiveness,
monolithic halts being profitable. This is where the
Microservices architecture comes to rescue. Microservices is

modular tactic for
application design. Microservices are small, autonomous

It can be well elaborated using
keywords: ‘Faster development and Speed to production’.
Microservices are deceptively termed to be code of limited
ength. Conversely, microservices are a piece of code which

performs a single task and performs it soundly. They are
independent in failure i.e. failure of a single component does
not force the entire system to breakdown at once. The term

e services to be lightweight and which
cannot be further divided into sub tasks and performs one task
solely with minimal dependency on other services. They are
independently scalable as well. The most perplexing part of

ularity of the services.

Security in microservices is one of the least explored topics.
This paper explores the various vulnerabilities in security and
also presents the various methods deployed for providing
authentication and authorization in microservices. Since
microservices depends on the idea of loose coupling and high

cohesion. They do not share any databases. If at all the
any dependencies among the microservices they use light
weight communication mediums to achieve it. The most
common and widely used communication methodology today
are the REST APIs. REST APIs are simple, stateless and
lightweight protocol used for
Representational State Transfer is stateless several traditional
authentication and authorization techniques fail to suffice the
purpose. Several protocols are being modulated for securing
the REST APIs. However there isn’t a standa
securing microservices. This paper provides a crisp
comparison of the several traditional and upcoming
techniques for providing authentication as well as
authorization in microservices. It also implements a model on
the OAuth 2.0 and OpenID Connect techniques employed for
the authentication and authorization in microservices.

The further sections of the paper is as follows: Section 2
briefs about the topics that gave motivation for this paper.
Section 3 explains the various perspectives in
security in microservices. Section 4 describes the various
traditional proposed solution for authentication and
authorization in microservices. Section 5 presents the
implemented model of the paper presenting OAuth2.0 and
OpenID Connect techniques. Section 6 provides a crisp
comparison of the strengths and flaws of the developed
techniques. Section 7 puts forth the accomplishments of the
paper.

LITERATURE SURVEY

Microservices has become a hot topic in field of software
development. Its efficiency is well demonstrated by big giants
like: Amazon, Netflix, eBay, etc. The book

International Journal of Current Advanced Research
– 6505, Impact Factor: SJIF: 5.995

www.journalijcar.org
2017; Page No. 3342-3345

http://dx.doi.org/10.24327/ijcar.2017.3345.0267

Shaikh and Sunil B. Mane. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

Shagufta N. Shaikh
Department of Computer Engineering, College of

AUTHENTIC TECHNIQUES OF AUTHENTICATION IN MICROSERVICES

College of Engineering Pune, Pune – 411005
Department of Computer Engineering & IT, College of Engineering Pune, Pune – 411005

Microservices is the catch word of the town nowadays. The microservices are small,
single task, and performing it well. However various concerns

such as security in microservices are not explored yet. This paper presents a comparison of
way SSL, HMAC, SAML, etc. used for authentication and

f the end users by the service providers. It also explores the concerns where
they lack and presents a model implementing OpenID Connect. It presents a proper
comparison to propose OpenID Connect to be best of the lot.

cohesion. They do not share any databases. If at all there are
any dependencies among the microservices they use light
weight communication mediums to achieve it. The most
common and widely used communication methodology today
are the REST APIs. REST APIs are simple, stateless and
lightweight protocol used for communication. As REST:
Representational State Transfer is stateless several traditional
authentication and authorization techniques fail to suffice the
purpose. Several protocols are being modulated for securing
the REST APIs. However there isn’t a standard protocol for
securing microservices. This paper provides a crisp
comparison of the several traditional and upcoming
techniques for providing authentication as well as
authorization in microservices. It also implements a model on

Connect techniques employed for
the authentication and authorization in microservices.

The further sections of the paper is as follows: Section 2
briefs about the topics that gave motivation for this paper.
Section 3 explains the various perspectives involved related to
security in microservices. Section 4 describes the various
traditional proposed solution for authentication and
authorization in microservices. Section 5 presents the
implemented model of the paper presenting OAuth2.0 and

echniques. Section 6 provides a crisp
comparison of the strengths and flaws of the developed
techniques. Section 7 puts forth the accomplishments of the

Microservices has become a hot topic in field of software
development. Its efficiency is well demonstrated by big giants
like: Amazon, Netflix, eBay, etc. The book [1] on

Research Article

This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Current Advanced Research

microservices can be well called the fundamental guide to
developing microservices. It exposes the concepts related to
data partition, service discovery, circuit breakers, etc. that are
required to be kept in mind while developing microservices.
Eric Evans [3] describes the methodology that is to be adapted
for modularizing the domain. It highly encourages designing
of applications on the tunes of “loose coupling and high
cohesion”.

Alshuqayran et.al. in their paper [2] identifies and presents
various architectural challenges related to microservice
systems. This paper emphasizes on the fact that security in
microservices is the least explored topic while designing and
developing the microservices. It diagrammatically ex
that only about 9% of the research is carried on microservice
security as compared to the other concerns. This motivates to
deep dive into the arena of security for microservices.
Security is a gigantic topic, and thus can’t be covered in a
single paper. This paper focuses on the authentication and
authorization module of security in microservices. It attempts
to formulate a standardized model for authentication and
authorization in microservices.

Various Standpoints in Securing Microservices

Microservices are vulnerable to several security issues. The
security of microservices can be visualized in a number of
standpoints. They are as follows:

Safe development lifespan and Test Automation

The backbone strategy of the microservices is the pace of
development. The microservice should be simplified and
quick to develop, scale, alter, test and deploy. While
developing microservices, the various security vulnerabilities
must be considered right from planning and designing stage.
This facilitates a robust microservices to withstand several
outbreaks.

DevOps Security

Microservices have various deployment configurations, the
widely adopted pattern is one service per host. The host is
usually a container (e.g. Docker). The containers by default
have no security employed. Thus making our services more
vulnerable to attacks. The alternatives for secluding the
containers and the granularity to which it must be secluded
must be planned.

Application Security

This is mainly considered with the access control
to the deployed microservices. The application as a whole is
not exposed to the users. Only few microservices of an
application gets direct exposure to external world. Hence the
security concern can be converged only on such
microservices. The challenge is to authenticate the consumer
and permit the login context amongst the microservices, in a
symmetric routine, thus consenting each microservice to
approve the user.

Theoretical Background

This section takes into account the various tradition
techniques that were employed for providing authentication
and authorization among the services. It also pin
features due to which these techniques do not suffice the
requirements of microservices.

International Journal of Current Advanced Research Vol 6, Issue 04, pp 3342-3345

3343

microservices can be well called the fundamental guide to
t exposes the concepts related to

data partition, service discovery, circuit breakers, etc. that are
required to be kept in mind while developing microservices.

describes the methodology that is to be adapted
highly encourages designing

of applications on the tunes of “loose coupling and high

identifies and presents
various architectural challenges related to microservice
systems. This paper emphasizes on the fact that security in
microservices is the least explored topic while designing and
developing the microservices. It diagrammatically explains
that only about 9% of the research is carried on microservice
security as compared to the other concerns. This motivates to
deep dive into the arena of security for microservices.
Security is a gigantic topic, and thus can’t be covered in a

paper. This paper focuses on the authentication and
authorization module of security in microservices. It attempts
to formulate a standardized model for authentication and

Various Standpoints in Securing Microservices

roservices are vulnerable to several security issues. The
security of microservices can be visualized in a number of

Safe development lifespan and Test Automation

The backbone strategy of the microservices is the pace of
development. The microservice should be simplified and
quick to develop, scale, alter, test and deploy. While
developing microservices, the various security vulnerabilities
must be considered right from planning and designing stage.

ust microservices to withstand several

Microservices have various deployment configurations, the
widely adopted pattern is one service per host. The host is
usually a container (e.g. Docker). The containers by default

ecurity employed. Thus making our services more
vulnerable to attacks. The alternatives for secluding the
containers and the granularity to which it must be secluded

This is mainly considered with the access control of the users
to the deployed microservices. The application as a whole is
not exposed to the users. Only few microservices of an
application gets direct exposure to external world. Hence the
security concern can be converged only on such

challenge is to authenticate the consumer
and permit the login context amongst the microservices, in a
symmetric routine, thus consenting each microservice to

This section takes into account the various traditional
techniques that were employed for providing authentication
and authorization among the services. It also pin-points the
features due to which these techniques do not suffice the

2-way SSL / TLS

SSL/TLS scheme is only used for authentication. Furthermore
it requires server to store clients’ certificate thus violating the
stateless property of REST used for communication among
the microservices.

HMAC Signing

HMAC signing is too used for authentication only. It also
requires sharing of keys thus weakening the solution. For each
request the MAC will differ. Thus requires the entire
procedure to be executed every single time.

SAML

SAML is very efficient mechanism but with SOAP
predecessor of REST APIs. Here the users log in into the
Identity provider and obtain a SAML. It then uses this SAML
with the service providers to access their services. T
protocol only makes use of one representation i.e. XML.
However in modern day Json etc. representation have gained
wide popularity. Also once the identity provider sends an
assertion it deletes it from its database. Hence the service
provider has no means to reassure itself later if required.

Proposed Security

The microservice require a robust authentication and
authorization mechanism as it is highly distributed in nature.
The most widely accepted protocol is OAuth 2.0. However
there is an upcoming protocol OpenID Connect for both
authentication and authorization. Both these pr
not require the server to maintain sessions. Thus withstanding
the REST and microservices constraint of stateless servers.
Furthermore they eliminate the time and labor required for
creating accounts for every service to access secured
resources. They also do not compromise the privacy of the
users. The users are relieved of entering their private
information for registering with the several applications.
They can simply exchange tokens and get themselves
validated by the services. This paper
protocols, and presents a comparison among them.

Figure 1 2-Way SSL /

Figure 2 HMAC Flow

Figure 3 SAML Flow

3345, April 2017

SSL/TLS scheme is only used for authentication. Furthermore
it requires server to store clients’ certificate thus violating the
stateless property of REST used for communication among

HMAC signing is too used for authentication only. It also
requires sharing of keys thus weakening the solution. For each
request the MAC will differ. Thus requires the entire

executed every single time.

SAML is very efficient mechanism but with SOAP- a
predecessor of REST APIs. Here the users log in into the
Identity provider and obtain a SAML. It then uses this SAML
with the service providers to access their services. This
protocol only makes use of one representation i.e. XML.
However in modern day Json etc. representation have gained
wide popularity. Also once the identity provider sends an
assertion it deletes it from its database. Hence the service

ans to reassure itself later if required.

require a robust authentication and
authorization mechanism as it is highly distributed in nature.
The most widely accepted protocol is OAuth 2.0. However
there is an upcoming protocol OpenID Connect for both
authentication and authorization. Both these protocols does
not require the server to maintain sessions. Thus withstanding
the REST and microservices constraint of stateless servers.
Furthermore they eliminate the time and labor required for
creating accounts for every service to access secured

es. They also do not compromise the privacy of the
users. The users are relieved of entering their private
information for registering with the several applications.
They can simply exchange tokens and get themselves
validated by the services. This paper implements both the
protocols, and presents a comparison among them.

Way SSL / TLS Flow

HMAC Flow

SAML Flow

Authentic Techniques Of Authentication In Microservices

OAUTH 2.0

The figure is self-illustrative of the flow of events in OAuth
2.0. The detailed descriptions of OAuth 2.0 terminologies are
as follows:

Problem

OAuth2.0 though a popular protocol, has a lot of
controversies associated with it. The first and foremost
it brings lack of anonymity. When one logs in via an
authorization server it gives the application rights or
authorization to view its personal details stored there. OAuth
is safe only when implemented correctly. However it does
guarantee that this process is full proof. It can lead to security
attacks like phishing, where innocent users may be prompted
by a look a like authorization server and asked to enter their
credentials. Thus leading to severe crimes.

OAuth is not a substitute for login func
developed to be used in scenarios where one requires to
import its data from Website A to Website B. The very
misconception in the use of OAuth2.0 is that it suffices both
the needs of the application i.e. Authentication along with
Authorization. It in fact does none. Furthermore even if
OAuth relieves users from inflowing passwords for several
websites it does not provide complete security. Because
though the passwords won’t be intercepted but in future if the
Resource Owner gets compromised the authorization that one
provides can be exploited. For e.g., if one allows a website A
(resource owner) to post on the Facebook page with the use of
OAuth, and in future Website A gets hacked. The hacker will
now be provided with the luxury of postin
desires on one’s Facebook page with the help of the OAuth
bearer tokens and permissions one had granted.

The use of bearer tokens is another threat. It is not secured can
lead to replay attacks. For example: Use of Authorization
Token can be imagined as the use of Cash. Once the cash
comes in hand of another person it can easily use it.
In analogy once the bearer token is acquired one can easily
impersonate the owner and access the secured resources from
the resource owner. OAuth is more about delegation. It tells
the resource owner that the authorization server does
recognize the user. But it has no means for the resource owner
to determine the legitimate owner. This leads to a major

Figure 2 OAUTH 2.0 Flow

Table 1 OAuth2.0 Terminologies

Actors
Clients, Authorization Servers, Resource Server,

Resource owner
Scopes Permissions
Tokens Access tokens, Refresh Tokens

Passing tokens By value, by reference (does not define Token format
Profiles of tokens Bearer, Holder of Key
Types of tokens WS-Security, SAML, JWT, Custom

ic Techniques Of Authentication In Microservices

3344

illustrative of the flow of events in OAuth
2.0. The detailed descriptions of OAuth 2.0 terminologies are

OAuth2.0 though a popular protocol, has a lot of
controversies associated with it. The first and foremost is that
it brings lack of anonymity. When one logs in via an
authorization server it gives the application rights or
authorization to view its personal details stored there. OAuth
is safe only when implemented correctly. However it does

process is full proof. It can lead to security
attacks like phishing, where innocent users may be prompted

like authorization server and asked to enter their

OAuth is not a substitute for login functionality. It is
developed to be used in scenarios where one requires to
import its data from Website A to Website B. The very
misconception in the use of OAuth2.0 is that it suffices both
the needs of the application i.e. Authentication along with

zation. It in fact does none. Furthermore even if
OAuth relieves users from inflowing passwords for several
websites it does not provide complete security. Because
though the passwords won’t be intercepted but in future if the

ed the authorization that one
provides can be exploited. For e.g., if one allows a website A
(resource owner) to post on the Facebook page with the use of
OAuth, and in future Website A gets hacked. The hacker will
now be provided with the luxury of posting anything he
desires on one’s Facebook page with the help of the OAuth
bearer tokens and permissions one had granted.

The use of bearer tokens is another threat. It is not secured can
lead to replay attacks. For example: Use of Authorization

imagined as the use of Cash. Once the cash
comes in hand of another person it can easily use it.
In analogy once the bearer token is acquired one can easily
impersonate the owner and access the secured resources from

h is more about delegation. It tells
the resource owner that the authorization server does
recognize the user. But it has no means for the resource owner
to determine the legitimate owner. This leads to a major

security concern. This is where the OpenID Co
vital role. It is well elaborated in section 5.2.

OpenID Connect

OpenID Connect a successor of OpenID, is an identity layer
over the OAuth2.0 protocol. It is a guideline that put in order
how an identity provider and trusting associates can use
OAuth2.0 to communicate identity data to one another.
It allows the application to verify the owner directly. It is
simple, interoperable, flexible and secure. It is better fit for
microservices. As it provides both identity token along with
authorization token in one request. It standardizes the security
protocol. It allows Clients to verify the identity of the
resource owner based on the authentication achieved by an
Authorization Server, as well as to attain elementary profile
evidence about the resource owner in an interoperable and
REST-like style. The specificatio
participants to use voluntary features such as encryption of
identity data, discovery of OpenID Providers, and session
management, as desired. Also the use of JWT tokens makes it
more secure, as these tokens are encrypted and
by applying HMAC over them. Thus attacks like replay
attacks, impersonation, etc. gets eliminated.

Thus OpenID Connect would be the optimal protocol for all
sorts of cloud computing technologies as it fulfils nearly all of
the requirements.

Implementation Outcomes

This paper proposed an implementation of both OAuth 2.0
and OpenID Connect. The technology stack consisted of
Spring Tool Suite as the IDE for developing Java
applications. The graphs listed below is captured using
jvisualVM. It is used to graphical
sketch Java applications. It is available with the jdk

The memory usage profiles of both the protocols are attached
as below:

OAuth2.0 Terminologies

Clients, Authorization Servers, Resource Server,
Resource owner

Access tokens, Refresh Tokens

does not define Token format)
Bearer, Holder of Key

Security, SAML, JWT, Custom

Figure 5 OpenID Connect Flow

Figure 6 OAuth2.0 Memory profile

security concern. This is where the OpenID Connect plays a
vital role. It is well elaborated in section 5.2.

OpenID Connect a successor of OpenID, is an identity layer
over the OAuth2.0 protocol. It is a guideline that put in order
how an identity provider and trusting associates can use
OAuth2.0 to communicate identity data to one another.

the application to verify the owner directly. It is
simple, interoperable, flexible and secure. It is better fit for
microservices. As it provides both identity token along with
authorization token in one request. It standardizes the security

allows Clients to verify the identity of the
resource owner based on the authentication achieved by an
Authorization Server, as well as to attain elementary profile
evidence about the resource owner in an interoperable and

like style. The specification set is extensible, allowing
participants to use voluntary features such as encryption of
identity data, discovery of OpenID Providers, and session
management, as desired. Also the use of JWT tokens makes it
more secure, as these tokens are encrypted and implemented
by applying HMAC over them. Thus attacks like replay
attacks, impersonation, etc. gets eliminated.

Thus OpenID Connect would be the optimal protocol for all
sorts of cloud computing technologies as it fulfils nearly all of

This paper proposed an implementation of both OAuth 2.0
and OpenID Connect. The technology stack consisted of
Spring Tool Suite as the IDE for developing Java-based
applications. The graphs listed below is captured using
jvisualVM. It is used to graphically observe, troubleshoot, and
sketch Java applications. It is available with the jdk-kit itself.

The memory usage profiles of both the protocols are attached

OpenID Connect Flow

OAuth2.0 Memory profile

International Journal of Current Advanced Research

The above two figures shows that the OAuth2.0 profile uses
more memory (64 MB) as compared to OpenID Connect (45
MB). This is because it requires to refresh the tokens at
intervals and also the bearer tokens are stored which are used
for authorization mechanism. Though it may consume
memory of the system however this might be considered as
beneficial due to the fact that it complicates the method of
guessing the tokens from excessive memory. Thus avoiding
Brute-force attacks. OpenID Connect on the other hand has no
such requirement and thus consumes relatively less memory.
Several of the user modifiable fields in OAuth are fixed in
OpenID Connect and hence the implementation complexity is
thus reduced. But this memory consumption profile makes an
important component of the microservices. Attempts should
be made to make it as light weight as possible, due to the
limited resources available with them. Also care must be
taken to make the server store as less as possibl
the clients.

The comparison thus formulated are as follows:

CONCLUSION

Microservices are small, autonomous services concentrated on
a single task, hence it is very essential to unburden them of
concerns related to authentication and authorization. OpenID
Connect caters as the best protocol for both authentication
along with authorization via OAuth 2.0. This enables the
services to function without the overhead of maintaining
databases for storing usernames and passwords.
Furthermore it also provides the best in market security
combatting several serious threats to privacy
the end users. This paper implemented the two models and
provided a comparison and evidences supporting the use of
OpenID connect for authentication in microservices.

Figure 7 OpenID Connect Memory Profile

Table 2 Comparison of implemented protocols

How to cite this article:

Shagufta N. Shaikh and Sunil B. Mane (2017
Journal of Current Advanced Research, 06(0
DOI: http://dx.doi.org/10.24327/ijcar.2017.

International Journal of Current Advanced Research Vol 6, Issue 04, pp 3342-3345

3345

The above two figures shows that the OAuth2.0 profile uses
more memory (64 MB) as compared to OpenID Connect (45
MB). This is because it requires to refresh the tokens at

stored which are used
for authorization mechanism. Though it may consume
memory of the system however this might be considered as
beneficial due to the fact that it complicates the method of
guessing the tokens from excessive memory. Thus avoiding

rce attacks. OpenID Connect on the other hand has no
such requirement and thus consumes relatively less memory.
Several of the user modifiable fields in OAuth are fixed in
OpenID Connect and hence the implementation complexity is

ory consumption profile makes an
important component of the microservices. Attempts should
be made to make it as light weight as possible, due to the
limited resources available with them. Also care must be
taken to make the server store as less as possible data about

The comparison thus formulated are as follows:

Microservices are small, autonomous services concentrated on
a single task, hence it is very essential to unburden them of
concerns related to authentication and authorization. OpenID
Connect caters as the best protocol for both authentication

uthorization via OAuth 2.0. This enables the
services to function without the overhead of maintaining
databases for storing usernames and passwords.
Furthermore it also provides the best in market security
combatting several serious threats to privacy and integrity of

This paper implemented the two models and
provided a comparison and evidences supporting the use of
OpenID connect for authentication in microservices.

References

1. Alshuqayran, N., Ali, N., & Evans, R. (2016,
November). A Systematic Mapping Study in
Microservice Architecture. In
Computing and Applications (SOCA), 2016 IEEE 9th
International Conference on

2. Blazquez, A., Tsiatsis, V., & Vandikas, K. (2015,
May). Performance evaluation of openid connect for an
iot information marketplace. In
Conference (VTC Spring), 2015 IEEE 81st
IEEE.

3. Domenech, M. C., Comunello, E., & Wangham, M. S.
(2014, October). Identity management in e
case study of web of things application using OpenID
connect. In e-Health Networking, Applications and
Services (Healthcom), 2014 IEEE 16th International
Conference on (pp. 219

4. Evans, E. (2004). Domain
complexity in the heart of
Professional.

5. Hassan, S., & Bahsoon, R. (2016, June). Microservices
and Their Design Trade
Roadmap. In Services Computing (SCC), 2016 IEEE
International Conference on

6. "How We Ended up with
Ended up with Microservices.
2017.

7. Jaramillo, D., Nguyen, D. V., & Smart, R. (2016,
March). Leveraging microservices architecture by
using Docker technology. In
1-5). IEEE.

8. Matt Stine. www.mattstine.com/microservices/
n.d. Web. 02 Jan. 2017

9. Microservices: Decomposing Applications for
Deployability and Scalability."
02 Jan. 2017.

10. "Microservices." Martin
Jan. 2017.

11. "Microservices: Five Architectural
Constraints." Nirmata. N.p., n.d. Web. 02 Jan. 2017.

12. Naik, N. (2016, October). Connecting google cloud
system with organizational systems for effortless data
analysis by anyone, a
Engineering (ISSE), 2016 IEEE International
Symposium on (pp. 1-6). IEEE.

13. Newman, S. (2015). Building microservices
Media, Inc.".

14. "The Netflix Tech Blog."
n.d. Web. 04 Jan. 2017.

15. Werner, J., & Westphall, C. M. (2016, June). A model
for identity management with privacy in the cloud.
In Computers and Communication (ISCC), 2016 IEEE
Symposium on (pp. 463-

16. www.mattstine.com/2014/06/30/microservices
solid/ Matt Stine. N.p., n.d.

OpenID Connect Memory Profile

Comparison of implemented protocols

(2017) ' Authentic Techniques Of Authentication In Microservices
06(04), pp. 3342-3345.

http://dx.doi.org/10.24327/ijcar.2017.3345.0267

3345, April 2017

Alshuqayran, N., Ali, N., & Evans, R. (2016,
November). A Systematic Mapping Study in
Microservice Architecture. In Service-Oriented
Computing and Applications (SOCA), 2016 IEEE 9th
International Conference on (pp. 44-51). IEEE.
Blazquez, A., Tsiatsis, V., & Vandikas, K. (2015,

evaluation of openid connect for an
iot information marketplace. In Vehicular Technology
Conference (VTC Spring), 2015 IEEE 81st (pp. 1-6).

Domenech, M. C., Comunello, E., & Wangham, M. S.
(2014, October). Identity management in e-Health: A

y of web of things application using OpenID
Health Networking, Applications and

Services (Healthcom), 2014 IEEE 16th International
(pp. 219-224). IEEE.

Domain-driven design: tackling
complexity in the heart of software. Addison-Wesley

Hassan, S., & Bahsoon, R. (2016, June). Microservices
and Their Design Trade-Offs: A Self-Adaptive

Services Computing (SCC), 2016 IEEE
International Conference on (pp. 813-818). IEEE.
"How We Ended up with Microservices." How We
Ended up with Microservices. N.p., n.d. Web. 04 Jan.

Jaramillo, D., Nguyen, D. V., & Smart, R. (2016,
March). Leveraging microservices architecture by
using Docker technology. In SoutheastCon, 2016 (pp.

www.mattstine.com/microservices/ N.p.,

Microservices: Decomposing Applications for
Deployability and Scalability." InfoQ. N.p., n.d. Web.

Martinfowler.com. N.p., n.d. Web. 04

"Microservices: Five Architectural
Nirmata. N.p., n.d. Web. 02 Jan. 2017.

Naik, N. (2016, October). Connecting google cloud
system with organizational systems for effortless data
analysis by anyone, anytime, anywhere. In Systems
Engineering (ISSE), 2016 IEEE International

6). IEEE.
Building microservices. " O'Reilly

"The Netflix Tech Blog." The Netflix Tech Blog. N.p.,
n.d. Web. 04 Jan. 2017.

J., & Westphall, C. M. (2016, June). A model
for identity management with privacy in the cloud.

Computers and Communication (ISCC), 2016 IEEE
-468). IEEE.

www.mattstine.com/2014/06/30/microservices-are-
solid/ Matt Stine. N.p., n.d. Web. 02 Jan. 2017.

Authentic Techniques Of Authentication In Microservices', International

