International Journal of Current Advanced Research

ISSN: O: 2319-6475, ISSN: P: 2319 – 6505, Impact Factor: SJIF: 5.995 Available Online at www.journalijcar.org Volume 6; Issue 3; March 2017; Page No. 2604-2607 DOI: http://dx.doi.org/10.24327/ijcar.2017.2607.0055

A POWERFUL BINDING OF PLANT BIOACTIVE COMPOUND SWERTIAMARIN TO OMPF PORINS RESEMBLING ANTIBIOTICS-AN IN SILICO STUDY

Gopal Madhana Vigneshwari., Perumal Sasidharan and Raja Mohmed Beema Shafreen*

Molecular and Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology (CNSNT), Sathyabama University, Chennai, India

ARTICLE INFO

Article History:

Received 18th December, 2016 Received in revised form 16thJanuary, 2017 Accepted 26th February, 2017 Published online 28th March, 2017

Key words: MDR, OMP, porins

ABSTRACT

Antibiotic resistance of the bacteria leads to Multi Drug Resistance (MDR) strain which is achieved mainly by the presence of Outer membrane Proteins (OMP) in the bacteria. Swertiamarin is an active compound isolated from Enicostemma axillare, a herb which was already proved to have antimicrobial activity. Also the herb was used to treat diseases like skin disease, intermittent fever, helminthiasis, tumors, diabetes mellitus, rheumatism, abdominal ulcer, hernia, swelling, itching, and insect poisoning. In this study, *in silico* analysis of swertamarin interaction was studied by docking the compound with *Salmonella typhi* and *Escherichia coli* OmpF porins. The molecular information helps in checking the efficiency of the compound as antibacterial agent and a way to design effective drugs from the compound.

Copyright©2017 **Raja Mohmed Beema Shafreen.** This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Around 25 to 30% of most of the organisms gene encode integral membrane proteins ^[1] and they are the key target of many pharmacological drugs. Porin is a major outer membrane protein (OMP) of most of the gram negative bacteria and a few gram positive bacteria.

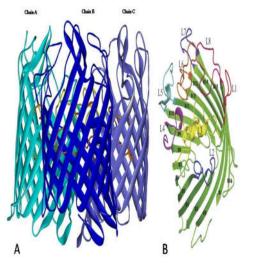


Figure ¹⁽⁷⁾ A) Cartoon representation of OmpF homotrimer B) OmpF monomer showing loops and beta strands information

Corresponding author:* **Raja Mohmed Beema Shafreen, Molecular and Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology (CNSNT), Sathyabama University, Chennai, India Porins function in allowing the passive diffusion of small, polar molecules like water, ions, glucose, and other nutrients as well as waste products (600-700 Da). In particular, gram negative bacteria is deficient in expressing OmpF when exposed to antibiotics which leads to develop resistant against that antibiotics mainly β - lactam antibiotics ^[2,3,4,5,6]. The structure of OMPF is a homotrimer and each monomer forms water filled open channels in the outer membrane that allows the movement of small hydrophilic solutes such as amino acids, monosaccharides and ions^[7] (Figure 1). Also, OmpF porins provide multi drug resistance to the bacteria by reducing the antibiotic permeability through altered pore properties which lowers the susceptibility of the bacteria for antibiotics ^[8]. There is always a need of efficient drugs to treat diseases. The study of OmpF antibiotic complexes will provide a better understanding about the molecular level interaction of the antibiotic with the porin and in future it helps in designing potent drugs to eradicate pathogenic diseases [8]. Then in silico study of ompf antibiotic. India is endowed with a rich wealth of Medicinal plants. The increasing failure, chemotherapeutics and antibiotic resistance exhibited by pathogenic microbial infections agents have led to the screening of several medicinal plants. Phytochemical is one such biologically active compound used effectively in treating human diseases in an idea to develop more effective and less toxic medicines. Plant derived drug serves as a prototype to increase body's natural resistance to diseases which is the expected remedy of any disease. Enicostemma axillare (Lam) A. Raynal (Gentianceae) is commonly known as 'Vellargu' in Tamil. It is an herb, 50cm inch in height widely distributed throughout India up to 450 MSL. It is a very bitter plant and used in indigenous medicines in treatment of fever and as bitter tonic. And the other benefits of the plant in treating skin disease, intermittent fever, helminthiasis and tumors, diabetes mellitus, rheumatism, abdominal ulcer, hernia, swelling, itching, and insect poisoning have been reported^[9,10]. Though the plant has so many medicinal properties, swertiamarin (Figure 2) is one identified potent compound isolated mainly from the aerial part of the plant ^[11,12]. Earlier, column chromatography over silica gel is performed to isolate swertiamarin but recently, Centrifugal Partition Chromatography is been successfully used for the separation of the compound from the crude extract of the plant [13,14]. In the present study, S. typhi OmpF (3NSG) and E. coli OmpF (2OMF) is docked with swertiamarin in order to find the antibacterial activity of the compound and the interacting residues involved in the influx of the compound through the porins ^[15]. This gives insight to the specificity of OmpF binding with swertiamarin in different organism porins namely E. coli and S. typhi.

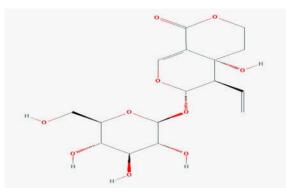


Figure 2 Structure of swertiamarin

MATERIALS AND METHODS

Selection of Target and Ligand

OmpF porin structures (3NSG and 2OMF) were retrieved from the protein databank (PDB) (www.rcsb.org/). Active site of the target protein was predicted using CASTp (http://sts.bioe.uic.edu/castp/). Swertiamarin (CID 442435) compound was retrieved from PubChem database (pubchem.ncbi.nlm.nih.gov).

Receptor Preparation and Docking

The heteroatom, water molecules and ligands were removed using Discovery Studio 4.1 before docking. Superimposition of 3NSG and 2OMF was done in SuperPose online server (http://wishart.biology.ualberta.ca/superpose/). The docking calculation for *S. typhi* OmpF and *E. coli* OmpF with ligand (swertiamarin) was performed with online Molecular docking server (http://www.dockingserver.com/web) and stand-alone AutoDock 4.0.1. A grid of 120, 120 and 120 points in x,y and z directions in AutoDock was built to cover the entire protein.

RESULTS

Molecular docking

Molecular docking was successfully completed between target receptor and the selected compound named swertiamarin (CID 442435).

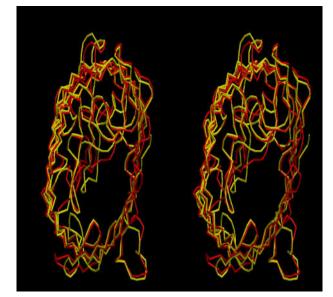


Figure 3 Superimposition of 2OMF and 3NSG by SuperPose server

Table 1 Active site residues calculated for 3NSG and 2OMF by CASTp server

Protein name	Predicted active site residues
	Tyr ¹⁴ , Gly ¹⁵ , Lys ¹⁶ , Va ¹¹⁸ , Leu ²⁰ , Tyr ²² , Asn ²⁷ , Gly ²⁸ , Glu ²⁹ , Ser ³¹ , Tyr ³² , Gly ³³ , Gly ³⁴ , Asn ³⁵ , Asp ³⁷ , Met ³⁸ , Tyr ⁴⁰ , Arg ⁴² , Lys ⁴⁶ , Gln ⁶⁰ , Glu ⁶² ,
E. coli OmpF	Asn ⁶⁴ , Gln ⁶⁶ , Asn ⁶⁸ , Asn ⁶⁹ , Thr ⁷⁷ , Gly ⁷⁸ , Lys ⁸⁰ , Thr ⁸¹ , Arg ⁸² , Leu ⁸³ , Arg ¹⁰⁰ , Tyr ¹⁰² , Tyr ¹⁰⁶ , Gly ¹¹⁰ , Asp ¹¹³ , Met ¹¹⁴ , Leu ¹¹⁵ , Pro ¹¹⁶ , Glu ¹¹⁷ , Phe ¹¹⁸ , Gly ¹¹⁹ , Gly ¹¹⁹ , Gly ¹²¹ , Ala ¹²³ , Tyr ¹²⁴ , Ser ¹²⁵ , Asp ¹²⁶ , Gly ¹³¹ , Arg ¹³² , Ala ¹⁶⁶ , Arg ¹⁶⁷ , Arg ¹⁶⁸ , Gln ²⁰³ , Phe ²⁵⁰ , Gln ²⁶² , Arg ²⁷⁰ , Ser ²⁷² , Leu ²⁹¹ , Val ²⁹² ,
(2OMF)	Gly ¹¹⁹ , Gly ¹²⁰ , Asp ¹²¹ , Ala ¹²³ , Tyr ¹²⁴ , Ser ¹²⁵ , Asp ¹²⁶ , Gly ¹³¹ , Arg ¹³² , Ala ¹⁶⁶ , Arg ¹⁶⁷ , Arg ¹⁶⁸ , Gln ²⁰³ , Phe ²⁵⁰ , Gln ²⁶² , Arg ²⁷⁰ , Ser ²⁷² , Leu ²⁹¹ , Val ²⁹² ,
	Asn ²⁹³ , Tvr^{294} , Thr^{300} , Tvr^{302} , Asn^{304} , Lvs^{305} , Asn^{306} , Met^{307} , Ser^{308} , TYR^{310} , Asn^{316} , Ile^{318} , Leu^{324} , Val^{326} , Glv^{327} , Val^{337} , Gln^{339} , Phe^{340}
	Lys ¹⁰ , Asp ¹² , Tyr ¹⁴ , Gly ¹⁵ , Lys ¹⁶ , Val ¹⁸ , Arg ²⁰ , His ²¹ , Val ²² , Trp ²³ , Thr ²⁴ , Thr ²⁶ , Asp ²⁸ , Ser ²⁹ , Lys ³⁰ , Asn ³¹ , Ala ³² , Asp ³³ , Gln ³⁴ , Thr ³⁵ , Tyr ³⁶ ,
	Gln^{38} , Ile^{39} , Lvs^{42} , Glv^{43} , Glu^{44} , Thr^{52} , Phe^{54} , Glv^{55} , Gln^{56} , Glu^{58} , Arg^{60} , Lvs^{62} , Ala^{63} , Asp^{64} , Arg^{65} , Ala^{66} , Glu^{67} , Leu^{75} , Arg^{77} , Leu^{78} , Phe^{80} ,
	Lys ⁸⁴ , Tyr ⁸⁵ , Ala ⁸⁶ , Glu ⁸⁷ , Gly ⁸⁹ , Ser ⁹⁰ , Asp ⁹² , Arg ⁹⁵ , Asn ⁹⁶ , Tyr ⁹⁷ , Gly ⁹⁸ , Ile ⁹⁹ , Tyr ¹⁰¹ , Asp ¹⁰² , Glu ¹⁰⁴ , Ser ¹⁰⁵ , Tyr ¹⁰⁶ , Thr ¹⁰⁷ , Asp ¹⁰⁸ , Ala ¹¹⁰ ,
S.typhi OmpF	Pro^{111} , Tvr^{112} , Phe^{113} , Ser^{114} , Glv^{115} , Glu^{116} , Thr^{117} , Glv^{119} , Glv^{120} , Ala^{121} , Tvr^{122} , Thr^{123} , Asp^{124} , Asn^{125} , Ser^{129} , Arg^{130} , Ala^{131} , Glv^{132} , Glv^{133} , Glv
(3NSG)	Thr ¹³⁶ , Arg ¹³⁸ , Asn ¹³⁹ , Ser ¹⁴⁰ , Asp ¹⁴¹ , Gly ¹⁴⁸ , Ser ¹⁵⁰ , Phe ¹⁵¹ , Gly ¹⁵² , Lys ¹⁵⁸ , Asn ¹⁵⁹ , Gln ¹⁶⁰ , Asp ¹⁶¹ , Asn ¹⁶² , His ¹⁶³ , Ser ¹⁶⁷ , Asn ¹⁶⁹ , Thr ¹⁷⁶ ,
	Ala ¹⁷⁸ , Tyr ¹⁷⁹ , Glu ¹⁸⁰ , Thr ¹⁸⁷ , Lys ²¹⁷ , Asp ²¹⁹ , Tyr ²²⁴ , Glu ²³⁹ , Thr ²⁴¹ , Asp ²⁴⁴ , Glu ²⁵⁶ , Val ²⁵⁸ , Gln ²⁶⁰ , Gln ²⁶² , Arg ²⁶⁸ , Ala ²⁷⁰ , Ser ²⁷² , Val ²⁷⁴ , Tyr ²⁹³ ,
	Gln ²⁹⁵ , Thr ²⁹⁹ , Tyr ³⁰¹ , Asn ³⁰⁷ , Trp ³⁰⁹ , Arg ³¹³ , Glu ³¹⁹ , Asn ³²⁰ , Ser ³²³ , Ser ³²⁴ , Ser ³²⁵ , Tyr ³²⁶ , Val ³²⁷ , Gly ³²⁸ , Thr ³²⁹ , Asp ³³⁰ , Gln ³³² , Thr ³³⁸ , Gln ³⁴⁰ ,
	Phe ³⁴¹

	Table 2 Docking calculations of	S. tvphi	and	<i>E.coli</i> OmpF porins
--	---------------------------------	----------	-----	---------------------------

Protein (PDBID)	Binding Energy	Inhibition Constant Ki	Interaction surface	Binding residues	Common active site residues of predicted and actual binding residues
<i>S. typhi</i> OmpF 3NSG	-4.50 kcal/mol	499.77 uM	690.523	Tyr ¹⁰¹ , Asp ¹⁰⁸ , Arg ²⁰ , Gly ¹⁵ , Tyr ¹⁴ , Arg ¹³⁰ , Arg ⁷⁷ , Glu ⁵⁶ , Glu ⁵⁸ , Gln ³⁸ , Tyr ⁹⁷	Tyr ¹⁰¹ , Asp ¹⁰⁸ , Arg ²⁰ , Gly ¹⁵ , Tyr ¹⁴ , Arg ¹³⁰ , Arg ⁷⁷ , Glu ⁵⁶ , Glu ⁵⁸ , Gln ³⁸ , Tyr ⁹⁷
<i>E. coli</i> OmpF 20MF	-5.14 kcal/mol	169.34 uM	658.387	Phe ¹¹⁸ , Asp ¹²¹ , Tyr ¹²⁴ , Leu ²⁹¹ , Val ²⁹² , Val ¹⁰⁰ , Gln ⁸⁰ , Tyr ³² , Arg ¹⁶³	Phe ¹¹⁸ , Asp ¹²¹ , Tyr ¹²⁴ , Leu ²⁹¹ , Val ²⁹² , Val ¹⁰⁰ , Gln ⁸⁰ , Tyr ³²

The active sites of the target structures were predicted using CASTp server and the results were tabulated (Table 1). The binding energy (ΔG) was found to be -6.87 kcal/mol and -7.95 kcal/mol for *S. typhi* OmpF and *E. coli* OmpF respectively. Inhibition constant was calculated to be 499.77 uM and 169.34 uM for *S. typhi* OmpF and *E. coli* OmpF respectively (Table 2). Interacting residues in the receptor was studied with Discovery studio 4.1 (Table 3 and 4). Superimposition of 20Mf and 3NSG was done in SuperPose server showing 54.9% identity and 70.2% similarity (Figure 3).

 Table 3 Structure information of the interacting residues

 in 3NSG

Interacting amino acids in <i>S. typhi</i> OmpF	Structure information of the interacting residues in <i>S. typhi</i> OmpF (3NSG)	
Tyr ¹⁰¹ , Asp ¹⁰⁸	Loop L3	
Arg ¹³⁰	Beta strand β7	
$\operatorname{Arg}^{20}, \operatorname{Gly}^{15}, \operatorname{Tyr}^{14}$ Arg ⁷⁷	Beta strand β2	
Arg ⁷⁷	Beta strand β5	
Glu ⁵⁶ , Glu ⁵⁸	Beta strand β4	
Gln ³⁸	Loop L1	
Tyr ⁹⁷	Beta strand β6	

 Table 4 Structure information of the interacting residues

 in 2OMF

Interacting amino acids in <i>E.coli</i> OmpF	Structure information of the interacting residues in <i>E. coli</i> OmpF (2OMF)
Phe ¹¹⁸ , Asp ¹²¹ , Tyr ¹²⁴ , Val ¹⁰⁰ Gln ⁸⁰	Loop L3
	Beta strand β 5
Tyr ³²	Loop L1
Tyr ³² Leu ²⁹¹ , Val ²⁹²	Beta strand β15
Arg ¹⁶³	Loop L4

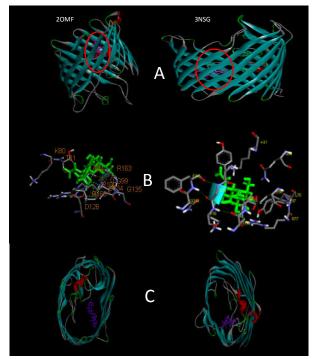


Figure 4 A) Side view of docked swertiamarin with 2OMF and 3NSG B) Docked pose of swertiamarin with 2OMF and 3NSG showing aminoacid residues C) Top view of docked swertiamarin with 2OMF and 3NSG

Binding of swertiamarin in an antibiotic pattern to S. typhi and E. coli OmpF

In *S. typhi* OmpF, the compound interacted with the following aminoacid residues Tyr¹⁰¹, Asp¹⁰⁸, Arg²⁰, Gly¹⁵, Tyr¹⁴, Arg¹³⁰,

Arg⁷⁷, Glu⁵⁶, Glu⁵⁸, Gln³⁸ and Tyr⁹⁷ in which Asp¹⁰⁸, Arg²⁰, Arg¹³⁰, Arg⁷⁷ and Gln³⁸ were reported binding residues in *E. coli* ompF with ampicillin ^[16], moxifloxacine ^[17] and enrofloxacin ^[18] (Figure 4). S. typhi and E. coli OmpF share higher percentage of sequence similarity ^[7]. In comparison with *E. coli* sequence, Leu²⁰ (from strand β 2) in *E. coli* sequence is replaced by Arg (from strand β 2) and Met³⁸ (from loop L1) in E. coli sequence is replaced by Glu (from loop L1) in S. typhi which on strong binding again with swertiamarin indicates the same efficiency of the replaced residues in binding with the compound. Leu²⁰ and Gln^{38} are known for providing the hydrophobic interaction of the beta lactam antibiotics in *E. coli* OmpF. Interestingly^[7] Asp¹⁰⁸ (from loop L3), Arg^{20} (from strand $\beta 2$) and Arg^{77} (from strand β5) residues in the beta strand, lines from extracellular to intracellular constriction zone and the binding of the compound to these residues in a particular fashion paves way for the translocation of the compound in to the porin.

In *E. coli* OmpF, swertiamarin interacts with Phe¹¹⁸, Asp¹²¹, Tyr¹²⁴, Leu²⁹¹, Val²⁹², Val¹⁰⁰, Gln⁸⁰, Tyr³² and Arg¹⁶³ in which Tyr³², Phe¹¹⁸, Asp¹²¹, Tyr¹²⁴, Leu²⁹¹ and Val²⁹² are common reported binding residues of *E. coli* OmpF with ampicillin ^[19]. Arg¹⁶³ (from loop L4) is present only in *E. coli* OmpF and is known for binding with antibiotics which is replaced with His¹⁶³ (from loop L4) in *S. typhi* OmpF ^[16]. Asp¹²¹ plays important role in the binding of colicin to OmpF (Bredin 2003) and the Asp¹²¹ mutant *E. coli* OmpF showed^[20]~20% increase in carbenicillin susceptibility.

CONCLUSION

Even though porins belong to general diffusion category, they do not transport molecules without any specificity inside the channel. The molecule to be transported through the channel makes specific interactions with the residues in the constriction zone which actually paves way to the transport of the particular molecule. In this study, the interaction of swertiamarin with E. coli OmpF and S.typhi OmpF was studied to explore the binding configuration of a swertiamarin compound to both porins. Despite the fact that S. typhi OmpF and E. coli OmpF share around 70.2% similarity, the property of the porin in allowing the same swertiamarin molecule differs. Based on the results obtained from the interaction study swertiamarin a phytochemical exhibit almost similar pattern of binding configuration with that of well-known antibiotics. Since E. axillare is known for its medicinal properties, the activity of swertiamarin comparable with antibiotics shows the efficiency of the compound as antibacterial agent. Being a plant derived compound it is less harmful and the information on the compound binding serve as a key for next generation medicine since the compound has many chemotherapeutic properties in treating diseases.

Acknowledgement

Equal contribution was made by the co-author and a request was made to kindly consider as first author. DST-INSPIRE and UGC-BSR-RFSMS for fellowship.

Reference

1. Wallin, E., von Heijne, G. 1998. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. *Protein Sci.* 7, 1029-1038.

- Heinze-Krauss, I., Angehrn, P., Charnas, R.L., Gubernator, K., Gutknecht, E.M. 1998. Structure based design of beta-lactamase inhibitors Synthesis and evaluation of bridged monobactams. *J Med Chem.* 41, 3961-71.
- Normark, B.H., Normark, S. 2002. Evolution and spread of antibiotic resistance. *J Intern Med.* 252, 91-106.
- 4. Poole, K. 2002. Outer membranes and efflux: the path to multidrug resistance in Gram negative bacteria. *Curr Pharm Biotechnol.* 3, 77-98.
- 5. Li, X.Z., Nikaido, H. 2004. Efflux-mediated drug resistance in bacteria. *Drugs*. 64, 159-204.
- 6. Benz, R. 2004. Wiley-VCH, ed. Role of bacterial porins in antibiotic susceptibility of gram-negative bacteria in Bacterial and Eukaryotic Porin. 41-59.
- Balasubramaniam, D., Arockiasamy, A., Kumar, P.D., Sharma, A., Krishnaswamy, S. 2012. Asymmetric pore occupancy in crystal structure of OmpF porin from Salmonella typhi. *J of Str Biol.* 178, 233–244.
- Kojima, S., Nikaido, H. 2013. Permeation rates of penicillins indicate that Escherichia coli porins function principally as nonspecific channels. *Proc Natl Acad Sci USA*. 110, E2629-2634.
- Vaidya, H., Goyal, R.K., Cheema, S.K. 2013. Antidiabetic Activity of Swertiamarin is due to an Active Metabolite, Gentianine, that Upregulates PPAR-γ Gene Expression in 3T3-L1 cells. *Phytother Res.* 27,624-627.
- Tushar, P. 2013. Swertiamarin: An Active Lead from Enicostemma littorale Regulates Hepatic and Adipose Tissue Gene Expression by Targeting PPARγ and Improves Insulin Sensitivity in Experimental NIDDM Rat Mode. *Evid Based Complement Alternat Med.* 2013, 358673.
- 11. Jaishree, V., Badami, S. 2010. Antioxidant and hepatoprotective effect of swertiamarin from Enicostemma axillare against D-galactosamine induced acute liver damage in rats. *J Ethnopharmacol.* 130, 103-106.

- 12. Rana, V.S, Dhanani, T., Kumar, S. 2012. Improved and rapid HPLC-PDA method for identification and quantification of swertiamarin in the aerial parts of Enicostema axillare. *Malaysian J Pharma Sc.* 10, 1-10.
- 13. Kim, C.Y., Ahn, M.J., Kim, J. 2006. Preparative isolation of mangiferin from Anemarrhena asphodeloides rhizomes by Centrifugal Partition Chromatography. *J Liq Chromatogr Relat Tech.* 29, 869-875.
- 14. Cheong, J.H., Kim, C.Y., Kim, J. 2007. Preparative isolation and purification of sinomenine from Sinomenium acutum by centrifugal partition chromatography. *J Sep Sci.* 30, 2105-2108.
- James, C.E., Mahendran, K.R., Molitor, A., Bolla, J.M., Bessonov, A.N., Winterhalter, M., Pagès, J. 2009. How β-Lactam Antibiotics Enter Bacteria: A Dialogue with the Porins. *PLoS One*. 4, e5453.
- Kumar, A., Hajjar, E., Ruggerone, P., Ceccarelli, M. 2010. Molecular Simulations Reveal the Mechanism and the Determinants for Ampicillin Translocation through OmpF. *J Phys Chem B*. 114, 9608–9616.
- 17. Hajjar, E., Kumar, A., Ruggerone, P., Ceccarelli, M. 2010.Investigating reaction pathways in rare events simulations of antibiotics diffusion through protein channels. *J Mol Model*. 16, 1701–1708.
- Mahendran, K.R. 2010. Molecular basis of enrofloxacin translocation through OmpF, an outer membrane channel of Escherichia coli when binding does not imply translocation. J Phys Chem. B. 114, 5170–5179.
- 19. Niveshika., Verma, E., Mishra, A.K., Singh, A.K., Singh, V.K. 2013. Structural Elucidation and Molecular Docking of a Novel Antibiotic Compound from Cyanobacterium Nostoc sp. MGL001. *Evi Comp and Alt Med.* 7, 1899.
- Bredin, J. 2003. Colicins, Spermine and Cephalosporins: A Competitive Interaction With The Ompf Eyelet. *Biochem J.* 376, 245–252.
- 21. Brigitte, K., Ziervogel., Roux, B. 2013. The Binding of Antibiotics in OmpF Porin. Structure. 21, 76–87.

Please cite this article in press as:

Gopal Madhana Vigneshwari *et al*(2017), 'A Powerful Binding Of Plant Bioactive Compound Swertiamarin To Ompf Porins Resembling AntibioticAn In Silico Study', *International Journal of Current Advanced Research*, 6(3), pp. 2604-2607.

http://dx.doi.org/10.24327/ijcar.2017. 2607.0055
