

DEVELOPMENT OF THE RECOGNITION SOFTWARE FOR THE DIESEL ENGINE
CRANKSHAFT AXIS STATUS BASED ON JAVA LANGUAGE

Shanghai Maritime University, Marine Merchant College, Shanghai, China, No.1550 Haigang Avenue

A R T I C L E I N F O

INTRODUCTION

The Java language is a simple, object-oriented, distributed,
interpreted, robust, secure, structure-neutral, portable, high
performance, multithreaded, dynamic language.

When SUN introduced the Java language in 1995, the world's
attention was drawn to this magical language. The Java
language was originally called OAK in 1991, and was
designed by SUN as a general-purpose environment for some
consumer electronics products. Scholars at home and abroad
have studied the characteristics of JAVA language.

Ancona, D etc. [1] showed that it was possible to define type
systems for Java-like languages, which, in contrast to those
used by standard compilers, had principal typings, hence could
be used as a basis for selective recompilation.

Tan Gang etc. [2] proposed ILEA (stands for Inter
Analysis), which was a framework that enabled existing Java
analyses to understand the behavior of C code.

Freund SN etc. [3] developed a precise specification of
statically correct Java bytecode, in the form of a type system.
Their focus was a subset of the bytecode language dealing with
object creation and initialization.

AssiriFatmahYousef etc. [4] developed Java Exceptions in the
NL (JENL) tool to process Java exceptions using NLG
techniques. Empirical evaluation has shown extreme
satisfaction among Java programming subjects (inclu
student novice programmers) with the capabilities of JENL as
well as its usability.

International Journal of Current Advanced Research
ISSN: O: 2319-6475, ISSN: P: 2319-6505,
Available Online at www.journalijcar.org
Volume 11; Issue 08 (B); August 2022
DOI: http://dx.doi.org/10.24327/ijcar.2022

Copyright©2022 GuoJunwu and Kong Degang. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article History:

Received 13th May, 2022
Received in revised form 11th
June, 2022
Accepted 8th July, 2022
Published online 28th August, 2022

Keywords:

Java language, diesel engine crankshaft,
crankweb deflection, crankshaft axis status

*Corresponding author: GuoJunwu
Shanghai Maritime University, Marine Merchant College,
Shanghai, China, No.1550 Haigang Avenue

DEVELOPMENT OF THE RECOGNITION SOFTWARE FOR THE DIESEL ENGINE
CRANKSHAFT AXIS STATUS BASED ON JAVA LANGUAGE

GuoJunwu and Kong Degang

Shanghai Maritime University, Marine Merchant College, Shanghai, China, No.1550 Haigang Avenue

 A B S T R A C T

The paper uses Java language of the computer to develop
diesel engine crankshaft axis state. The software adopts four modules of DrawAxes, Axes,
DrawBtnListener and Reset Btn Listener to realize the three functions such as input, output
and drawing, according to the measured data of the diesel engine crankweb deflection,
these functions can realize the roles of computing the crankweb inflection and drawing the
crankshaft axis status, finally recognizes the diesel engine crankshaft axis state.

oriented, distributed,
neutral, portable, high-

performance, multithreaded, dynamic language.

n 1995, the world's
attention was drawn to this magical language. The Java
language was originally called OAK in 1991, and was

purpose environment for some
consumer electronics products. Scholars at home and abroad

the characteristics of JAVA language.

Ancona, D etc. [1] showed that it was possible to define type
like languages, which, in contrast to those

used by standard compilers, had principal typings, hence could
selective recompilation.

Tan Gang etc. [2] proposed ILEA (stands for Inter-LanguagE
Analysis), which was a framework that enabled existing Java
analyses to understand the behavior of C code.

Freund SN etc. [3] developed a precise specification of
lly correct Java bytecode, in the form of a type system.

Their focus was a subset of the bytecode language dealing with

AssiriFatmahYousef etc. [4] developed Java Exceptions in the
NL (JENL) tool to process Java exceptions using NLG
techniques. Empirical evaluation has shown extreme
satisfaction among Java programming subjects (including
student novice programmers) with the capabilities of JENL as

Bettini Lorenzo etc. [5] gave a formal account of our proposal
through a core calculus, FDTJ (FEATHERWEIGHT
DYNAMIC TRAIT JAVA), equipped With a static type
system guaranteeing that in a well
type error would take place.

Though the Java programming language was designed with
extreme care, there were still a few ambiguities and
irregularities left in the language. The ambiguities were those
issues that were not defined clearly in the Java language
specification. The problems of ambiguity, irregularity, and
dependence on implementations frequently trapped an
incautious Java programmer. Some suggestions and solutions
for the problems were provided

Dmitriev M [7] described a make technology for the Java
programming language, that was based on smart dependency
checking, guarantees consistency of the project code, and at
the same time reduced the number of source code
recompilations to the minimum.

Cohen Tal etc. [8] presented an overview of JTL (the Java
Tools Language, pronounced "Gee
querying JAVA programs. JTL was designed to serve the
development of source code software tools for JAVA, and as a
small language to aid programming language extensions to
JAVA.

Servetto Marco etc. [9] proposed a
class definitions were first class values and new classes could
be derived from existing ones by exploiting the full power of

International Journal of Current Advanced Research
6505, Impact Factor: 6.614

www.journalijcar.org
2022; Page No.1434-1438

//dx.doi.org/10.24327/ijcar.2022.1438.0318

This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Shanghai Maritime University, Marine Merchant College,

DEVELOPMENT OF THE RECOGNITION SOFTWARE FOR THE DIESEL ENGINE
CRANKSHAFT AXIS STATUS BASED ON JAVA LANGUAGE

Shanghai Maritime University, Marine Merchant College, Shanghai, China, No.1550 Haigang Avenue

develop the recognition software for the
diesel engine crankshaft axis state. The software adopts four modules of DrawAxes, Axes,

to realize the three functions such as input, output
and drawing, according to the measured data of the diesel engine crankweb deflection,
these functions can realize the roles of computing the crankweb inflection and drawing the

nally recognizes the diesel engine crankshaft axis state.

Bettini Lorenzo etc. [5] gave a formal account of our proposal
through a core calculus, FDTJ (FEATHERWEIGHT
DYNAMIC TRAIT JAVA), equipped With a static type

aranteeing that in a well-typed program no runtime

Though the Java programming language was designed with
extreme care, there were still a few ambiguities and
irregularities left in the language. The ambiguities were those

ues that were not defined clearly in the Java language
specification. The problems of ambiguity, irregularity, and
dependence on implementations frequently trapped an
incautious Java programmer. Some suggestions and solutions
for the problems were provided by Chan JT etc. [6]

Dmitriev M [7] described a make technology for the Java
programming language, that was based on smart dependency
checking, guarantees consistency of the project code, and at
the same time reduced the number of source code

ns to the minimum.

Cohen Tal etc. [8] presented an overview of JTL (the Java
Tools Language, pronounced "Gee-tel"), a novel language for
querying JAVA programs. JTL was designed to serve the
development of source code software tools for JAVA, and as a

ll language to aid programming language extensions to

Servetto Marco etc. [9] proposed a Java-like language where
class definitions were first class values and new classes could
be derived from existing ones by exploiting the full power of

Research Article

This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Current Advanced Research Vol 11, Issue 08(B), pp 1434-1438, August 2022

1435

the language itself, used on top of a small set of primitive
composition operators, instead of using a fixed mechanism like
inheritance.

Cordoba-Sanchez Irene [10] described a new modelling
language for the effective design and validation of Java
annotations.

League C etc. [11] present an efficient encoding of core Java
constructs in a simple, implementable typed intermediate
language.

Many contemporary object-oriented programming languages
supported first-class queries or comprehensions. These JAVA
language extensions made it easier for programmers to write
queries, but were generally implemented no more efficiently
than the code using collections, iterators, and loops that they
replaced. [12]

The JastAdd Extensible Java Compiler was a high quality Java
compiler that was easy to extend in order to build static
analysis tools for Java, and to extend Java with new language
constructs. It was built modularly, with a Java 1.4 compiler
that was extended to a Java 5 compiler. [13]

Parnin Chris etc. [14] reported on the first empirical
investigation into how Java generics had been integrated into
open source software by automatically mining the history of
40 popular open source Java programs, traversing more than
650 million lines of code in the process, and evaluated five
hypotheses and researched questions about how Java
developers used generics.

No formal specification of the bytecode verifier existed in the
Java Virtual Machine Specification published by Sun. Freund
SN etc. [15] developed such a specification in the form of a
type system for a subset of the bytecode language.

According to the research results of domestic and foreign
experts, the excellent features of the Java language makes Java
applications extremely robust and reliable, and also reduces
the maintenance cost of the application system. Java's full
support for object technology and the API embedded in the
Java platform can shorten the development time and reduce the
cost of application systems. Java's compile once, runnable
nature allows it to provide an open architecture that can be
used anywhere and a low-cost way to transfer information
between multiple platforms. Therefore, a set of diesel engine
crankshaft axis status recognition software can be designed for
marine engineers by using advanced Java language, so as to
judge the diesel engine axis status quickly, accurately and
intuitively in real ship work and ensure the normal operation of
diesel engine.

Install the development environment

The software can be developedon an ordinary computer, the
steps are as follows:

1. Install the jdk-1_5_0_05-windows-i586-p.exe
package on aordinary computer first.

2. And then jfreechart - 0.9.21.Jar/gnujaxp jar/jcommon
- 0.9.6. Jar file copy to C: \ Program Files \ Java \
jdk1.5.0 _05 \ lib directory.

3. Configure environment variables:
My computer -> Properties -> Advanced -> Environment
Variables -> System Variables -> Find the path item -> add "to

the variable value"; C: Program Files\Java\jdk1.5.0_05\bin "->
Click OK
My Computer -> Properties -> Advanced -> Environment
Variables -> System Variables -> New CLASSPath entry ->
Enter variable values.
“.;C:\ProgramFiles\Java\jdk1.5.0_05\lib\dt.jar;C:\ProgramFiles
\Java\jdk1.5.0_05\lib\tools.jar;C:\ProgramFiles\Java\jdk1.5.0_
05\lib\gnujaxp.jar;C:\ProgramFiles\Java\jdk1.5.0_05\lib\jcom
mon-0.9.6.jar;C:\ProgramFiles\Java\jdk1.5.0_05\lib\jfreechart-

0.9.21.Jar”－>Click OK
At this point, the development environment has been installed
and configured successfully.

Identification software design and description

In order to realize the three functions of input, output and
drawing, the following four modules of DrawAxes, Axes,
DrawBtnListener and ResetBtnListener are needed in this
software.

DrawAxes module

Through DrawAxes, the function of data input, calculation and
display can be realized. The specific process is as follows:

Step 1: Define various arrays to store data and computed
results, as well as various visual objects such as labels, text
boxes, and so on.
Step 2: Add the various visual objects to the top-level
container of the JApplet to display the various objects.
Step 3: Design the input function and read the measurement
data of the input text box.
Step 4: According to the calculation formula of arm distance
difference, design the calculation function, calculate the arm
distance difference and store it in the result array.
Step 5: Design the result display function to display the
calculation results and use Axes module to draw the coordinate
graph.

The specific implementation of the key code is as follows:
// Variable definition section:
private static final double INCREMENT = -0.05;//Set the
incremental
int symbol = 12;//Set flag bit
Container c = getContentPane();//The container
doublevalueTopPoint[]=new double[13];//The top dead center
data
doublevalueLeftUnderPoint[]=new double[13];// The left
bottom dead center data
doublevalueRightUnderPoint[]=new double[13];//The right
bottom dead center data
doublevalueLeftPoint[]=new double[13];//The left point data
doublevalueRightPoint[]=new double[13];//The right point
data
doublevalueResultTU[]=new double[13];//The result of △⊥
calculation
oublevalueResultLR[]=new double[13];//The result of △_
calculation
doublevalueAxes[]=new double[15];//Draw coordinate chart
data
LineBorderlb = new LineBorder(Color.BLACK);//Creating a
border Instance
JButtonbtnDraw=new JButton(" drawing "); // Draw button
JButtonbtnReset=new JButton(" reset "); // Reset button
JLabellblCylinderNum=new JLabel(" cylinder ", JLabel.
CENTER); // Cylinder number label

Development of The Recognition Software For The Diesel Engine Crankshaft Axis Status Based on Java Language

 1436

JLabellblTopPoint=new JLabel(" TOP dead center
",JLabel.CENTER);
JLabellblLeftUnderPoint=new JLabel("Left bottom dead
center ",JLabel.CENTER);
JLabellblRightUnderPoint=new JLabel("Right bottom dead
center ",JLabel.CENTER);
JLabellblLeftPoint=new JLabel ("At "left
point",JLabel.CENTER);
JLabellblRightPoint=new JLabel("At "right
point",JLabel.CENTER);
JLabellblTopResultUnder=new
JLabel("△⊥",JLabel.CENTER);
JLabellblLeftResultRight=new
JLabel("△_",JLabel.CENTER);
Image img=null;//Create a storage image variable
ImageIconimgIcon;//Create icon
JLabeljLblExplain=new JLabel();//Create a display image
label
staticJPanelaxesGraph=new JPanel(null);//Coordinate line
chart
ResetBtnListenerrstBListener=new
ResetBtnListener(this);//Create a button listener
DrawBtnListenerdraBListener=new
DrawBtnListener(this);//Create a button listener
// Interface display part:
c.setLayout(null);//Set up the layout manager
c.add(btnDraw);//Add drawing button
c.add(btnReset);//Add reset button
c.add(lblCylinderNum);//Add a cylinder number label
c.add(lblTopPoint);
c.add(lblLeftUnderPoint);
c.add(lblRightUnderPoint);
c.add(lblLeftPoint);
c.add(lblRightPoint);
c.add(lblTopResultUnder);
c.add(lblLeftResultRight);
c.add(jLblExplain); // Add the display image tag
c.add(axesGraph); // Add coordinate line graph
btnDraw.setBounds(20, 474, 100, 30); // Set the button
position
btnReset.setBounds(140, 474, 100, 30);
lblCylinderNum.setBounds(0, 0, 69, 30);
lblTopPoint.setBounds(0,30,69,30);
lblLeftUnderPoint.setBounds(0,60,69,30);
lblRightUnderPoint.setBounds(0,90,69,30);
lblLeftPoint.setBounds(0,120,69,30);
lblRightPoint.setBounds(0,150,69,30);
lblTopResultUnder.setBounds(0,180,69,30);
lblLeftResultRight.setBounds(0,210,69,30);
lblResultTU1.setBounds(); // Set the result label position
lblResultLR1.setBounds(); // Set the result label position
txtTopPoint1.setBounds(); // Sets the position of the input text
box
txtLeftUnderPoint1.setBounds(); // Sets the position of the
input text box
txtRightUnderPoint1.setBounds(); // Sets the position of the
input text box
txtLeftPoint1.setBounds(); // Sets the position of the input text
box
txtRightPoint1.setBounds(); // Sets the position of the input
text box
btnReset.addActionListener(rstBListener); // Register reset
button

btnDraw.addActionListener(draBListener); // Register the
drawing button
JLblExplain.SetBounds (0240260234); // Set the image label
position
AxesGraph.SetBounds (260240385264); // Set the position of
the coordinate line chart
try{
img=getImage(new URL(getCodeBase(),"Explain.jpg")); //
Get the image
}
catch(Exception e){e.printStackTrace();}
imgIcon=new ImageIcon(img); // Generate an icon
jLblExplain.setIcon(imgIcon); // Display the image
jLblExplain.setHorizontalAlignment(SwingConstants.CENTE
R); // Set the image to display
c.setVisible(true); // Display all controls}
// Function function:
Public void setSymbol()// Determines and sets the Symbol
value
{
inti=0;
for(i=1;i<=12;i++)
{
if(valueTopPoint[i]==0&&valueLeftUnderPoint[i]==0&&valu
eRightUnderPoint[i]==0&&valueLeftPoint[i]==0&&valueRig
htPoint[i]==0) {symbol=i-1;break;}
else symbol=i;
}
}
Public void getValuePoint()// Obtain measurement point data
Public void calculate()// Calculate the arm length difference
{
int counter=0;
int sign=symbol+1;
for(counter=1;counter<=symbol;counter++)
{
valueResultTU[counter]=valueTopPoint[counter]-
((valueLeftUnderPoint[counter]+valueRightUnderPoint[counte
r])/2.0);
valueResultLR[counter]=valueLeftPoint[counter]-
valueRightPoint[counter];
BigDecimalbTU = new
BigDecimal(Double.toString(valueResultTU[counter]));
valueResultTU[counter]=bTU.setScale(2,
BigDecimal.ROUND_HALF_UP).doubleValue(); //Round up
or down
BigDecimalbLR = new
BigDecimal(Double.toString(valueResultLR[counter]));
valueResultLR[counter]=bLR.setScale(2,
BigDecimal.ROUND_HALF_UP).doubleValue();///Round up
or down

}
for(counter=2;counter<=sign;counter++)
{valueAxes[counter]=valueResultTU[counter-1];}
valueAxes[1]=INCREMENT+valueResultTU[1];
valueAxes[sign+1]=INCREMENT+valueResultTU[symbol];
valueAxes[0]=sign+1;
}
Public void resetValuePoint()// Clears data
Public void resetTextLabel()// Clears text boxes and label
values
Public static JPanelgetAxesGraph(

International Journal of Current Advanced Research Vol 11, Issue 08(B), pp 1434-1438, August 2022

1437

Public void setLabelValue()// Sets the label to display the
calculated result

Axes module

Axes class was used to realize the drawing function of
Crankshaft Deflection coordinate figure and the specific
process was as follows:

Step 1: Define the valuePoint array to hold the calculation
results received from the DrawAxes module, that is, the raw
data to draw the coordinate graph.

Step 2: Create xySeries data list with for(I =1;
i<=valuePoint[0]; I ++)xyseries. Add (i-1,valuePoint[I])
statement, generate coordinate graph data point, and add
xyseries data list. Next, create the XySeries Collection dataset,
which is a coordinate data source recognized by the plotting
function, and add the XYSeries data list to the dataset.

The third step: through jfreechart =
ChartFactorycreateXYLineChart framework () method to
generate the coordinate chart. The createChart() method is
used to draw the coordinate graph from the xySeriesCollection
data set as the data source.
Step 4: Add the ChartPanel graphics container containing the
Jfreechart coordinates to the DrawAxes image display control
axesGraph.
The key code for drawing the coordinate graph is as follows:
static double valuePoint[]=new double[15];
public Axes(String s,double temp[])
{ super(s);
valuePoint=temp;
DrawAxes.getAxesGraph().removeAll(); // Clear the original
image in the display control
XYDatasetxydataset = createDataset();
JFreeChartjfreechart = createChart(xydataset);
ChartPanelchartpanel = new ChartPanel(jfreechart);
Chartpanel.SetPreferredSize (new Dimension (385264)); // Set
the canvas size
setContentPane(chartpanel); // Display the coordinates
DrawAxes.getAxesGraph().add(chartpanel);
}
Private static XYDatasetcreateDataset()// Create coordinate
data point
{ inti=0;
XYSeries = new XYSeries(" XYSeries "); // Create a list of
data
for(i=1; i<=valuePoint[0]; i++)xyseries.add(i-1,valuePoint[i]);
XYSeriesCollectionxyseriescollection = new
XYSeriesCollection(); // Create a data set
xyseriescollection.addSeries(xyseries);
returnxyseriescollection; }
Private static JFreeChartcreateChart(XYDatasetXYDataset)//
Draw the coordinate diagram
{JFreeChartJFreeChart = ChartFactory. CreateXYLineChart ("
Crankshaft Deflection coordinate figure ", "shaft arm is apart
from the difference", "+ delta - delta, "xydataset,
PlotOrientation. VERTICAL, true, true, false);
NumberAxisdomainaxis =
(NumberAxis)xyplot.getDomainAxis(); // Coordinates are
graduated in units spaced apart
domainaxis.setTickUnit(new NumberTickUnit(1D)); //
Coordinates are graduated in units spaced apart
standardxyitemrenderer.setSeriesPaint(0,Color.BLACK); // Set
the line color

returnjfreechart; }

DrawBtnListener module

Through the DrawBtnListener class, to achieve the response
function of the drawing button, the specific implementation
process is as follows:

Step 1: Define the DrawAxes variable x and set the object
instances that the module will operate on.
Step 2: Get the input data from the input module using the
getValuePoint() method.
Step 3: Calculate the arm distance difference using the
Calculate () method.
Step 4: Display the calculated results through setLabelValue()
method.
Step 5: Call Axes module to generate coordinate graph.
The specific implementation of the key code is as follows:
DrawAxes x;
 DrawBtnListener(DrawAxes temp) { x=temp; }
 public void actionPerformed(ActionEvent e)
{ x.getValuePoint();
x.setSymbol(); // Set the number of cylinders
x.calculate();
x.setLabelValue();
Gra = new Axes("Crankshaft Deflection coordinate diagram",
x.valueaxes);
gra.pack();
x.axesGraph.setVisible(true); // display coordinates}

ResetBtnListener module

Through the class ResetBtnListener, to achieve the reset button
response function, the specific implementation process is as
follows:
Step 1: Define the DrawAxes variable x and set the object
instances that the module will operate on.
Step 2: Clear the calculated results of the DrawAxes display
area with resetTextLabel().
Step 3: Clear the data stored in the DrawAxes module using
the resetValuePoint() method.
Step 4: Clear coordinate point data in Axes module by
resetAxesValue() method.
The specific implementation of the key code is as follows:
DrawAxes x;
ResetBtnListener(DrawAxes temp) { x=temp; }
public void actionPerformed(ActionEvent e)
 { x.resetTextLabel();
 x.resetValuePoint();
 Axes.resetAxesValue();
 x.axesGraph.setVisible(false);//Clear expired
coordinates
}

Use of identification software

Run the program to get the measurement record and coordinate
chart of the crankshaft of the main and secondary engines,
directly input the actual measured arm distance difference data
of each cylinder in the table, and finally output the crankshaft
axis state curve of the diesel engine and the calculation results
of the measurement data. See Figure 1.

Development of The Recognition Software For The Diesel Engine Crankshaft Axis Status Based on Java Language

 1438

Figure 1 Axis status diagram of marine engine

CONCLUSION

In this paper, Java language is used to develop the recognition
software for the diesel engine crankshaft axis status, the
system can quickly and accurately get the diesel engine
crankshaft axis status recognition charts, engine management
personnel can judge the crankshaft center line status by the
crankshaft status recognition chart.

Acknowledgements

In writing this paper, I have benefited from the presence of my
colleagues. They generously helped me collect the materials
and offered many invaluable suggestions. I hereby extend my
grateful thanks to them for their kind help, without which the
paper would not have been what it is.

Conflicts of Interest

The author declares that there is no conflict of interest
regarding the publication of this paper.

Data Availability Statement

The data used to support the findings of this study are included
within the article.

Funding Statement

This work was supported by the National Natural Science
Foundation of China. Grant number is 11272213.

References

1. Ancona, D; Zucca, E.Principaltypings for Java-like
languages.ACM SIGPLAN NOTICES. 2004, 39(1):
306-317

2. Tan Gang; Morrisett Greg. ILEA: Inter-
language analysis across Java and C. ACM SIGPLAN
NOTICES. 2007, 42(10): 39-56

3. Freund SN; Mitchell JC.A type system for object
initialization in the Java bytecode language.ACM
Transactions On Programming Languages And
Systems. 1999, 21(6): 1196-1250

4. AssiriFatmahYousef; ElazharyHanan.Automated Java e
xceptions explanation using natural language generation
techniques. Computer Applications in Engineering
Education. 2020, 28(3): 626-644

5. Bettini Lorenzo; Capecchi Sara; DamianiFerruccio.On
flexible dynamic trait replacement for JAVA-like
languages. Science of Computer Programming. 2013,
78(7): 907-932

6. Chan JT; Yang W; Huang JW. Traps in Java. Journal
of Systems and Software. 2004, 72(1): 33-47

7. DmitrievM. Language-specific make technology for
the Java (TM) programming language. ACM Sigplan
Notices. 2002, 37(11): 373-385

8. Cohen Tal; Gil Joseph; MamanItay. JTL -
the Java tools language. ACM Sigplan Notices. 2006,
41(10): 89-108

9. Servetto Marco; Zucca Elena. Metafjig A Meta-Circular
Composition Language for Java-like Classes. Acm
Sigplan Notices. 2011, 45(10): 464-483

10. Cordoba-Sanchez Irene; de Lara Juan. Ann: A domain-
specific language for the effective design and validation
of Java annotations. Computer Languages Systems &
Structures. 2016, 45: 164-190

11. League C; Shao Z; Trifonov V. Type-preserving
compilation of featherweight Java.ACM Transactions
On Programming Languages And Systems. 2002, 24(2):
112-152

12. Willis Darren; Pearce David J.; Noble James. Caching
and Incrementalisation in the Java Query Language.
Acm Sigplan Notices.2008, 43(10): 1-17

13. Ekman Torbjorn; Hedin Gorel.The JastAdd
Extensible Java Compiler. ACM Sigplan Notices.2007,
42(10): 1-17

14. Parnin Chris; Bird Christian; Murphy-Hill Emerson.
Adoption and use of Java generics. Empirical Software
Engineering. 2013, 18(6): 1047-1089

15. Freund SN; Mitchell JC.A type system for
the Java bytecode language and verifier. Journal Of
Automated Reasoning. 2003, 30(3): 271-321

How to cite this article:

GuoJunwu and Kong Degang (2022) 'Development of The Recognition Software For The Diesel Engine Crankshaft Axis
Status Based on Java Language', International Journal of Current Advanced Research, 11(08), pp. 1434-1438.
DOI: http://dx.doi.org/10.24327/ijcar.2022.1438.0318
