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INTRODUCTION 
 

In recent times, Distributed optical fiber sensing (DOFS) 
systems have been broadly used in varied industries with 
regard to health structural monitoring and security surveillance 
due to their immunity to large-scale monito
installation, geometric versatility as well as low cost per 
monitored point [1]. There have been a cross
of these with respect to sensing parameters [2], monitoring 
range [3], spatial resolution [4], vibration detection [5],
others. As one of the typical DOFS systems, the Phase
sensitive Optical Time Domain Reflectometry (Φ
one of the most vigorous and integral part of the distributed 
optical fiber sensing technologies, the Φ-OTDR is known to be 
an effective tool for border intrusion monitoring with respect 
to detecting and locating one or more vibration events 
occurring along the sensing fiber [6] [7]. The application of the 
said sensing technology becomes stressful should the data 
meant for vibration detection is impeded my noise. Hence, The 
CNNs has greatly demonstrated its strength in enhancing the 
sensing performance of 2Draw data of Raman OTDR [8], 
event recognition and classification, as well as strain 
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A R T I C L E  I N F O             A B S T R A C T  
 

 

In Distributed Optical Fiber Sensors (DOFS), the Phase
Reflectometry (Ф-OTDR) technology has tremendously demonstrated stupefying 
performance with regard to measurements of real-time accurate positioning of trains, 
intrusion detection, all due to its unique prospects on high sensitivity and precision, fast 
speed response, long distance sensing, everlasting lifetime service, and above all, low 
operational cost. Nonetheless, its application for vibration detection becomes stress
should the data is impeded by harsh external conditions. Hence to successfully enhance its 
smooth application, we investigated and executed a robust deep learning algorithm
Denoising Convolutional Neural Network (DnCNN) on Ф
vibration detection. We utilized 60 exquisite layers comprising ReLU, 2Dconvolutional, 
batch normalization in order to improve the training speed and denoising performanceand 
finally a regression layer. The trained network (TrainedNet), was successfully perform
after obtaining Digital Down Conversion (DDC) of the Ф
locating the vibration point was smoothly harnessed at a distance of approximately 50m 
and the proposed DnCNN technique was then evaluated against one state
denoising algorithm and it outperformed it. The theoretical analysis and simulated 
demonstrations of the preceding locations under the sensing distance of 200m are hereby 
presented as proof of concept. 

 

In recent times, Distributed optical fiber sensing (DOFS) 
systems have been broadly used in varied industries with 
regard to health structural monitoring and security surveillance 

scale monitoring, simple 
installation, geometric versatility as well as low cost per 
monitored point [1]. There have been a cross-sectional analysis 
of these with respect to sensing parameters [2], monitoring 
range [3], spatial resolution [4], vibration detection [5], among 
others. As one of the typical DOFS systems, the Phase-
sensitive Optical Time Domain Reflectometry (Φ-OTDR) is 
one of the most vigorous and integral part of the distributed 

OTDR is known to be 
ol for border intrusion monitoring with respect 

to detecting and locating one or more vibration events 
occurring along the sensing fiber [6] [7]. The application of the 
said sensing technology becomes stressful should the data 

is impeded my noise. Hence, The 
CNNs has greatly demonstrated its strength in enhancing the 
sensing performance of 2Draw data of Raman OTDR [8], 
event recognition and classification, as well as strain 

prediction of Rayleigh backscatter spectra with noise 
and improved resolution [9–
successfully applied on specific experimental datasets 
involving wavelet scanning coherent optical time domain 
frequency dimensions. Deep learning in recent times has 
greatly demonstrated significant impact in signal processing. 
The denoising DnCNN [18-19] consisting of convolutions, 
batch normalization (BN) [20], rectified linear unit (ReLU) 
[21] and residual learning (RL) [22], [23] was successfully 
applied for JPEG image deblocking, image den
super-resolution enhancement. In the BOTDA sensing system, 
the DnCNN model was also applied of which improved SNR 
values of 13.43 dB, 13.57 dB, and 12.9 dB are achieved at 500 
MSa/s, 250 MSa/s, and 125 MSa/s sampling rate, accordingly 
[24] [25]. Hence, the DnCNN approach was successfully 
investigated and applied for denoising the Φ
after performing an effective training of the model. The quest 
to detecting the vibration point was smoothly executed with a 
significant enhancement of the SNR value from 15dB to 
36.6dB. The efficacy of the proposed model was evaluated 
against another state-of-the-art denoising technique. The next 
section introduces the theoretical basis of the Φ
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In Distributed Optical Fiber Sensors (DOFS), the Phase-sensitive Optical Time Domain 
OTDR) technology has tremendously demonstrated stupefying 

time accurate positioning of trains, 
detection, all due to its unique prospects on high sensitivity and precision, fast 

speed response, long distance sensing, everlasting lifetime service, and above all, low 
operational cost. Nonetheless, its application for vibration detection becomes stressful 
should the data is impeded by harsh external conditions. Hence to successfully enhance its 
smooth application, we investigated and executed a robust deep learning algorithm-
Denoising Convolutional Neural Network (DnCNN) on Ф-OTDR sensing data for 

tion detection. We utilized 60 exquisite layers comprising ReLU, 2Dconvolutional, 
batch normalization in order to improve the training speed and denoising performanceand 
finally a regression layer. The trained network (TrainedNet), was successfully performed 
after obtaining Digital Down Conversion (DDC) of the Ф-OTDR noisy data. The target of 
locating the vibration point was smoothly harnessed at a distance of approximately 50m 
and the proposed DnCNN technique was then evaluated against one state-of-the-art 
denoising algorithm and it outperformed it. The theoretical analysis and simulated 
demonstrations of the preceding locations under the sensing distance of 200m are hereby 

prediction of Rayleigh backscatter spectra with noise tolerance 
–16]. In [17], the CNN was 

successfully applied on specific experimental datasets 
involving wavelet scanning coherent optical time domain 
frequency dimensions. Deep learning in recent times has 

ficant impact in signal processing. 
19] consisting of convolutions, 

batch normalization (BN) [20], rectified linear unit (ReLU) 
[21] and residual learning (RL) [22], [23] was successfully 
applied for JPEG image deblocking, image denoising, and for 

resolution enhancement. In the BOTDA sensing system, 
the DnCNN model was also applied of which improved SNR 
values of 13.43 dB, 13.57 dB, and 12.9 dB are achieved at 500 
MSa/s, 250 MSa/s, and 125 MSa/s sampling rate, accordingly 

[25]. Hence, the DnCNN approach was successfully 
investigated and applied for denoising the Φ-OTDR signal 
after performing an effective training of the model. The quest 
to detecting the vibration point was smoothly executed with a 

f the SNR value from 15dB to 
36.6dB. The efficacy of the proposed model was evaluated 

art denoising technique. The next 
section introduces the theoretical basis of the Φ-OTDR sensing 
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system whereas Section 3 presents the propos
Section 4 illustrates the results and discussions, and Section 5 
concludes the paper.  
 

Theoretical Basis of the Φ-OTDR Sensing System
 

Basic Principle of Φ-OTDR Technology 
 

Figure 1 gives an illustration of the Φ-OTDR system. The said 
sensing technology which is the OTDR prototype was initially 
demonstrated by Henry F. Taylor in 1993 [26]. It has since 
noted as one of the key distributed optical fiber sensing 
technologies. Traditionally, the working principle of the two 
systems is related, and compared to the broadband light source 
used by the conventional OTDR system, the Φ
uses ultranarrow line width lasers as its main source of light. It 
receives and uses the interference effect between the backward 
Rayleigh light in the wide pulse, then injects the high coherent 
light into the sensing fiber and the reflected coherent Rayleigh 
scattered light is detected by the detector [27]. The Φ
system has the advantage of high sensitivity as well as a longer 
distance sensing ability. Apparently, the Φ
principally enhance direct detection and coherent detection of 
two structures. These attributes are the main difference between 
the two systems [27].  
 

Fig 1 The working Principle of the Φ-OTDR system
 

Significantly, the advantage of direct detection by the Φ
system is known to be relatively low in terms of cost. Also, its 
data processing method and structure are quite simple. The main 
disadvantage of coherent detection for the Φ
the strict requirement on the coherence of light source [27].In 
the orientation of the Φ-OTDR system when there is 
perturbation on the fiber at a certain point, the internal refractive 
index and the length of the fiber at that location will change, 
thereby resulting in a change in the optical phase of the optical 
interference [27]. This change therefore leads to backward 
Rayleigh scattering light intensity, which means that the 
backward optical power changes and will be disturbed when the 
scattering power curve subtracts the power curve without 
disturbance. Hence, the distance of the disturbed signal, 
according to the light in the fiber speed as well as the si
transmission time of the corresponding relationship and 
disturbance information, can be positioned accurately [28]. 
 

Methodological Approach  
 

Frequency Shift for A Zero-Band Signal Acquisition
 

In order to effectively facilitate smooth training of the 
model towards the desired denoising output, we first performed 
digital down-conversion frequency shift on the 
simulated mid-band signal to enhance a zero
applying Hilbert Transform as presented beneath in 
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the internal refractive 

index and the length of the fiber at that location will change, 
thereby resulting in a change in the optical phase of the optical 

. This change therefore leads to backward 
hich means that the 

backward optical power changes and will be disturbed when the 
scattering power curve subtracts the power curve without 
disturbance. Hence, the distance of the disturbed signal, 
according to the light in the fiber speed as well as the signal 
transmission time of the corresponding relationship and 
disturbance information, can be positioned accurately [28].  

Band Signal Acquisition 

In order to effectively facilitate smooth training of the DnCNN 
, we first performed 

conversion frequency shift on the Ф-OTDR 
band signal to enhance a zero-band signal by 

Transform as presented beneath in Eq. (1).   

   [ ]t hbt I t                                                                    
 

of which  [ ]hbt I t  is indicated as Hilbert transform so that 

 t  could be retrieved successfully. Therefore, the mid

frequency band signal was effectively enhanced by the 
application of Eq. (2) as illustrated below
 

   beat I t j t  
                                                            

whereby beat  represents the mid

 t  represents the imaginary signal and 

real signal. Finally, the digital frequency down
execution was successfully performed to achieve the zero
signal using Eq. (3) below 
 

 2beat exp j ft    �
Where represents the zero-band signal. Hence, the application 
of the DnCNN model for training towards the achievement of 
the desired denoising outcome was performed after obtaining 
the Digital Down Conversion DDC noisy data. The illustra
of the DDC approach is therein presented below in Fig. 2.  
 

Fig 2 Frequency shift for Zero

DnCNN Architecture 
 

The DnCNN architecture is comprised of three principal 
operators such as: Convolution (Conv), Batch Normalization 
(BN), and the Rectified Linear Units (ReLU). The main function 
of the convolution operator is to enhance the extraction of 
different feature maps from images using different convolutional 
filters. As a result in shallow layers, the elementary visual 
features such as edges, end-points, corners are obtained and 
further combined with higher layers to learn the characteristics 
of the inputs in order to enhance effective filtering. Emphatically 
stating, the preceding capabilities give the approach a distinctive 
feature of been able to recognize or restore the required results. 
Nevertheless, it is always challenging to train the net solely with 
convolution operator hence, the BN and ReLU are incorporated 
to facilitate the training process as presented in Fig. 3 below.
 

Fig 3 DnCNN Architecture

The BN operator is integrated to extensively speed up the 
training process and also boost the denoising performance [20]. 
It is capable of solving the internal co
problems that occur during the training
problems emanate as a result of the changes in the distribution 
of the input from each layer during the training processes due to 
the changes in the parameters of the previous layers. The ICS 
poses treats on the training model thereby sl
process. Hence, normalizing the input of each layer is always 
handled smoothly by the BN operation to greatly reduces the 
ICS related constraints. In addition, the activation function on 
the other hand is equally incorporated to add nonlinea
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The BN operator is integrated to extensively speed up the 
training process and also boost the denoising performance [20]. 
It is capable of solving the internal co-variate shift (ICS) related 
problems that occur during the training process. The said 
problems emanate as a result of the changes in the distribution 
of the input from each layer during the training processes due to 
the changes in the parameters of the previous layers. The ICS 
poses treats on the training model thereby slowing down the 
process. Hence, normalizing the input of each layer is always 
handled smoothly by the BN operation to greatly reduces the 
ICS related constraints. In addition, the activation function on 
the other hand is equally incorporated to add nonlinear factors in 
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order to solve more complex difficulties. As one of the most 
prominent activation functions, using the ReLU facilitates the 
network to converge faster during the training processes and the 
gradient vanishing problem will be effectively control
result, by successfully combining the convolution operation with 
ReLU [19], the DnCNN can gradually and effectively separate 
the desired image constituents from the noisy observation 
through the hidden layers. The data presented exhibits the 
dimensions of 4 0 0 0 4 0 0 0  of which the depth of DnCNN is 

chosen to be 20, whereby the patches size of the receptive field 
is 5 0 5 0 2  . The 20 layers can be divided into three types: 

(1) the first layer is comprised of 64 filters with a size of 

used to construct 64 feature mapping the noisy input data, of 
which the ReLU is then utilized for nonlinearity; (2) Fr
layers 2-19, 64 filters of size 6 4 3 3  are used, whereby the 

BN is added in-between the convolution and ReLU functions; 

(3) Then a 3 3 2   size filter is used to reconstruct the final 

outputs.          
 

  2

1

1
( ) ( ; )
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The input for the DnCNN training process is represented as 
anoisy observation of u x y  , where y is the clean data and 

u is indicated as the noise. Therefore, in the DnCNN training 
process, the noise learning formulation is adopted to train a 
noise mapping ( )R u x , and then the clean signal can be 

obtained by ( )x y R y  [21]. The noise output is then 

normalized using batch normalization. Eq. (4) is the loss 
function of the DnCNN approach, which is the average mean 
squared error between the noise and estimated ones from the 
nosy input [22]. Therefore to minimize the value of (4), the 
DnCNN is trained to obtain the features of noise u from the 
noise data x. Behind the propagation phase of the training 
process, the Θ which is the trainable parameters of each Conv, 
BN and ReLU are automatically adjusted to minimize the loss 
function. In the training, the DnCNN can effectively estimate 
the distribution of noise from the noisy input data based on the 
acquired knowledge. The next section presents the discussion of 
the DnCNN training process. 

Denoising constraints and training technique 

In this study, instead of expressly learning and following the 
pattern of a discriminatory modeling approach, we explored 
and handled the Φ-OTDR signal denoising process as an 
obvious selective learning problem using the DnCNN scheme. 
The performance of the general 2D image denoising 
techniques using ANNs involving the CNNs have 
demonstrated tremendous impact in recent decades [24]. The 
effectiveness of the CNNs is incontestable of which the non
local self-similarity techniques such as the TRND, BM3D 
purported for non-photographic image denoising performed 
abysmally lower compared to the CNNs which significantly its 
effectiveness with regard to less computational time among 
other qualities. Unlike, majority of denoising schemes pose 
complex and need vigorous effort and expensive optimization 
processes that lead to high computational cost, rather it is 
during the training stage that optimization is carried out using 
the CNN technique to effectively predict the denoised output 
from the noisy input. Notwithstanding, the inability of most 
recent architectures to explicitly determine the level of noise, 
are widely considered as the blind kind of denoising schemes 
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acquired knowledge. The next section presents the discussion of 
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In this study, instead of expressly learning and following the 
pattern of a discriminatory modeling approach, we explored 

OTDR signal denoising process as an 
obvious selective learning problem using the DnCNN scheme. 

e general 2D image denoising 
techniques using ANNs involving the CNNs have 
demonstrated tremendous impact in recent decades [24]. The 
effectiveness of the CNNs is incontestable of which the non-

similarity techniques such as the TRND, BM3D 
photographic image denoising performed 

abysmally lower compared to the CNNs which significantly its 
effectiveness with regard to less computational time among 
other qualities. Unlike, majority of denoising schemes pose 

effort and expensive optimization 
processes that lead to high computational cost, rather it is 
during the training stage that optimization is carried out using 
the CNN technique to effectively predict the denoised output 

ing, the inability of most 
recent architectures to explicitly determine the level of noise, 
are widely considered as the blind kind of denoising schemes 

[22]. Hence, in our work  we successfully applied deep 
learning approach to intensively process a stead
over several hundreds of GB/s. As a result, the function is 
learned and then maps the input with the pairs of the output. 
The DnCNN is therefore carefully trained to predict the 
denoised 3D data from the 3D input data. Usually, a normal 
CNN architecture is comprised of an input layer, convolutional 
layers, and finally a regression or output layer. Hence these 
convolutional functions at this stage estimate the sliding dot 
outcome of the end product of the preceding layers with the 
desired filters. This is then followed by the application of a 
nonlinear activation notably the rectified linear unit (ReLU) to 
facilitate faster convergence of the network and to equally 
eliminate the gradient vanishing problems before the output 
progresses to the next batch of layer for processing. Therefore 
in the beginning of the training stage, the DnCNN network is 
given a 3D input data represented as 
the various learnable kernels are tuned during each epoch 
based training to reduce the de
with respect to the ground truth data denoted as X. The 
purpose is to effectively retrieve a clean data

noise data y Y . Hence, y is referred to as the superposition 

of the ground truth image data x with noise v  expressed as 
y x v  . General purpose signal denoisers must be tolerant 

enough to be able to be executed on any form of structural 
distributions in the data or image and should compromise for 
the processing of any high level frequency signals with 
outstretched uniform structures. Contrarily, the demonstration 
of the structural patterns in the image present particularized 
distribution, size, orientation and shape as illustrated in Fig 4 
(a). It is lucid that the existence of these distinctive patterns 
emanated due to the interference of several Rayleigh scattering 
effect within the length of the pulse propagating on the sensing 
fiber. The prevalence of these features are mainly resulted as 
the functions of the bandwidth detection process, optical pulse 
duration, and the sampling rate. Intuitively, since the structural 
features exhibits relatively high level ratios, as well as 
prevailing orientation on the distance axis, the application of 
exact filters matching these kinds of ratios was executed to 
achieve the desire outcome. A critical assessment of the 
structural patterns and matching of the receptive field with the 
orientation and the structure st
proposed technique and as a result, there is the need to equally 
enhance the DnCNN model with a good number of 
convolutional layers.   

Fig 4 (a) Ground truth image (b) Noisy image (c) Ground truth signal (d) 
Noisy signal 
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In Fig. 4(b), the noise demonstrates some characteristic spatial 
patterns of the measured 3D noise concentration. Also, the 
intensity of the extreme noise level can be seen by comparing 
the ground truth signal (reference clean signal) in Fig. 4(c) and 
Fig. 4(d) which heavily demonstrates the jagged noise 
presence on the signal compared to its ground truth signal.
 

DnCNN Training Procedure for Denoising 
 

To successfully demonstrate the performance of the DnCNN for 
training the Ф-OTDR sensing data, we first a
executed digital down conversion on the simulated Ф
data to obtain a zero-band signal. The training process was then 
incorporated with the BN function to speed up the process. The 
mini-batch adaptive moment estimation (adam) was used with 
weight decay factor of 0.0001 of which the gradient decay factor 
equally was set to 0.95 and a value of mini-batch size used was 
50. The dimension of the data is 4000 4000

patches size of 50 50 2  was applied for the training. The 

model was trained based on 60 epochs and for each training 
epoch, the random patch pairs of the image and noise signal are 
combined as inputs of the DnCNN, and the corresponding noise 
signals are marked as the labels. 

 

Fig 5 Flowchart of the proposed DnCNN based on Ф
detection 

 

A total of 195 iterations per one epoch was observed during the 
training of which an overall total of 11700 iterations were 
recorded during the entire training period. The learning rate is 
decayed exponentially with a value of 10−3 for the training of the 
60 epochs. The training period took a total of 26 hours, 15 
minutes to train the model based on Matlab (R2021a) program 
on a 64-bit window 10 operating system, thus an XPS Dell PC 
with a 16GB RAM powered by Core i7 CPU processor. To 
decrease the training time, the simplest way is to reduce the 
training data set, training epochs, or the network layers. 
However, in doing so the performance of the DnCNN may 
degrade and the target will not be achieved. The presentation of 
the DnCNN training for the purpose of attaining the vibration 
detection is illustrated in Fig. 5 above. The DnCNN predicts the 
noise data from the input data, then restores a clean data. During 
the training process, the parameters of the DnCNN are gradually 
optimized to minimize the difference between the acquired noise 
and the predicted result. Therefore, the trained DnCNN 
algorithm can be well adapted to the actual Ф
towards the vibration detection. The strength of 
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optimized to minimize the difference between the acquired noise 
and the predicted result. Therefore, the trained DnCNN 
algorithm can be well adapted to the actual Ф-OTDR system 
towards the vibration detection. The strength of the DnCNN was 

tested against other state-of-the
comparatively determine its effectiveness as discussed in the 
subsequent sections. 
 

The PCA denoising Stage of the Ф
 

In the principal component analysis setting, the 
signal is denoted as m × n dimensional aggregation, of which 
signifies the number of transmission and 
stations unit. To acquire the sterling divergence, the data 
element coordinate system is turned til the first angle is on the
tendency. Then the next number angle is selected for the 
subsequent number of variance dependent on the restraint that 
will be orthogonal to the initial order[29], thus
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In conclusion,  the energy of a signal will become concentrated 
on a minute set during the transformation of the dataset, whereas 
the energy level of the noise will be uniformly distributed over 
the entire dataset; thus, it totally decorrelates the simulatedФ-
OTDR noisy data thus A , separating the signal from the noise 
for the enhancement of the desired denoised output. 
 

RESULTS AND DISCUSSIONS 
 

The Ф-OTDR simulation setup 
 

Figure 6 illustrates the simulation setup based on the Ф-OTDR 
sensing technology for vibration detection of which an 
ultranarrow-line width laser of 100Hz operating at 1549.835nm 
is utilized as the source of light with the polarization-
maintaining (PM) serving as the output. The laser output is then 
split into two channels by a 50:50 PM coupler. One of the 
channels is modulated by an in-phase/quadrature (I/Q) 
modulator operating at 50MHz frequency shift to generate the 
pulsed probe wave of 100ns pulse width with a sampling rate of 
2GHz. The erbium-doped fiber amplifier (EDFA) is set into the 
optical path to increase the power of the pulse light for the 
enhancement of the intensity of the Rayleigh scattering (RS) 
light along the sensing fiber. The probe pulse is then injected 
into the sensing fiber through a circulator and the Rayleigh 
scattering signal is then injected into the 50:50 coupler. Another 
channel of the laser output is applied as the LO. Before the LO 
is injected into the 50:50 coupler, a polarization controller (PC) 
is inserted to match the LO with the selected polarization 
channel of the 50:50 coupler and before the 50:50 coupler there 
is the variable optical attenuator (VOA), which is used to adjust 
the powers of the LO. The two outputs of the 50:50 coupler are 
converted into the electrical E_Receive and E_Receive_noise 
(clean RS and noise RS signals) respectively by a two-port 
balanced photo-detector (BPD) and then sampled by the OSC at 
a position of 200m sensing fiber range. The external vibration 
source is simulated by a cylindrical piezo transducer (PZT) with 
a 12.7m bare fiber coiled around as the test point. Finally, the 
process leading to acquisition of data for training towards 
denoising, angle and phase unwrapping, and vibration detection 
are further completed in real time by the use of a personal 
computer.  
 

 
 

Fig 6 The Ф-OTDR simulation setup 
 

Vibration extraction 
 

After successfully denoising  the DDC noisy data to obtain the 
desired denoised output for the purpose of unearthing the 
vibration point, the resulting complex time-domain signal was 
converted from the real and the imaginary format to the 
magnitude or phase format by the application of Eq. (10) as 

shown below.      2 2[ ]t t h t                                 (10) 

 

We then performed angle and phase unwrapping algorithm to 
pave way for the vibration extraction using Eq. (11) and (12) 
expressed below;  
 

   [ ]t unwrap                                                          (11) 
 

of which   represents the zero-band complex signal after 

denoising, and    signifies taking the angle of the DDC 

noisy signal and after which,  t  is successfully retrieved to 

aid the process of phase trace. 
After locating the external perturbation, the  phase information 
of the vibration signal is further accomplished by the phase 
difference execution. The phase change within the gauge length

z  can be expressed as shown in Eq. (12). 
 

   z z z     
                                                 (12) 

 

which is linearly associated with the strain induced by the 
external vibration. Since there is a phase accumulation process 
when the pulse light passes through the perturbation zone, the 
gauge length must be greater than the sum of the vibration area 
(~2m) as well as the region influenced by the vibration. As the 
space occupied by the probe pulse is 20m, the region influenced 
by the vibration covers from 21m to vibration point and 19m 
after the perturbation area. As stated in the receding, the gauge 
length is twice the theoretical resolution which leads to better 
SNR achievement. As a result, the measurand with respect to the 
SNR and Root Mean Square Error were then computed and 
analyzed. Therefore, the corresponding statistical features and 
desired information was extracted to reveal the vibration points 
on the time domain signals. The SNR and Root Mean Square 
Error are then computed of which the SNR is expressed as the 
ratio of the power of the clean signal (meaningful information) 
to the power of background noisy signal (unwanted signal). The 
signal power and the noise power are hereby represented as; 

 SP var y                                                                          (13) 

where y is the desired signal without noise (fitted curve) and 

(·)var is the variance. On the other hand, the noise power of 

the signal is also represented as           

( )NP var s y                                                                      (14) 

of which s is the simulated signal with noise. As stated above, 
the SNR is expressed as shown in  
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                                                        (15) 

where SP and NP  indicate the signal power and noise power.  
 

Analysis of DnCNN and PCA Results 
 

As previously stated, digital down-conversion was performed on 
the simulated Φ-OTDR data which was initially a mid-band 
signal to obtain a zero-band signal (complex signal) where Eq. 
(1), (2), and Eq. (3) were respectively employed to harness an 
effective application of the proposed DnCNN and the PCA 
denoising technique. The desired denoised signals were then 
successfully achieved. Hence, the results of the original signal 
and its corresponding denoised signals are demonstrated in Figs. 
7(a), (b) and (c) representing the original signal, DnCNN 
denoised signal and PCA denoised signal respectively below. It 
is evident that there is a significant diminution of the noise level 
per the denoised results by the proposed technique compared to 
the denoised results of the PCA with respect to the presence of 
extreme noise observed on the original signal, as shown in Fig. 7 
below. 
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Fig 7 (a) Original signal  (b) DnCNN denoised (c) PCA denoised 
 

In order to achieve the target of this research, the 
denoised results by the proposed and the other state
denoising approach were respectively obtained and the 
performance of angle and phase unwrapping, differential phase 
trace were duly executed to enhance the vibration detection 
along the fiber under test by the application of Eq. (10), (11) and 
(12), respectively. 
 

Vibration Extraction 
 

The output of the normalized demodulated reflection of the 
intensity traces are respectively constructed and compared with 
the denoised normalized intensity trace signals, as illustrated in 
Fig 8. Constructively, the performance enhancement can be 
observed per the reflection of the intensity trace on the original 
signals appearing to be extremely notched due to the presence of 
much interference and fading effect, thereby leading to the 
demonstration of exceedingly weak fading points as 
comparatively presented below whereby all categories of (a) 
represent the original data, (b) DnCNN denoised results, (c) 
PCA denoised results of which the proposed technique 
the best result,  
 

Fig 8 (a) Original intensity trace (b) DnCNN denoised  (c) PCA denoised 

In the field of signal processing, telecommunications, optical 
imaging, among others, fading has been an obstacle. The said 
phenomenon posses devastating influence on signals, which 
sometimes becomes very arduous to precisely locate the 
vibrations after denoising, all due to the presence of the phase 
extraction noise in the differential phase traces. 
 

Fig. 9 (a) Original phase trace (b) DnCNN denoised (c) PCA denoised
 

Nevertheless, the proposed DnCNN successfully handled the 
said plight significantly towards the target denoised signal, 
which facilitated the extraction of the normalized denoised 
phase traces as presented in Fig. 8. Therefore a comparative 
analysis with respect to the performances of the proposed and 
the PCA denoising techniques are objectively demonstrated of 
which the proposed technique outperformed it. However, to 
further confirm the performance strengths of the aforementioned 
denoising techniques, the computation of the signal
ratio (SNR), the standard deviation (STD) as well
affirmation of the SNR enhancement were respectively 
performed during the extraction of the time domain signals. 
Comparatively a presentation of the time domain signals 
regarding the original time domain, DnCNN denoised time 
domain and the PCA denoised time domain are hereby 
illustrated in Fig. 10. 
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Nevertheless, the proposed DnCNN successfully handled the 
towards the target denoised signal, 

which facilitated the extraction of the normalized denoised 
phase traces as presented in Fig. 8. Therefore a comparative 
analysis with respect to the performances of the proposed and 

ctively demonstrated of 
which the proposed technique outperformed it. However, to 
further confirm the performance strengths of the aforementioned 
denoising techniques, the computation of the signal-to-noise-
ratio (SNR), the standard deviation (STD) as well as the 
affirmation of the SNR enhancement were respectively 
performed during the extraction of the time domain signals. 
Comparatively a presentation of the time domain signals 
regarding the original time domain, DnCNN denoised time 

ised time domain are hereby 

Fig. 10 (a) Original Time domain signal (b) DnCNN denoised time domain 
signal (c) PCA denoised time domain signal 

There was an overwhelming improvement of the SNR value 
from 15dB to 36.6dB corresponding to both the original and 
denoised time domain signals, respectively by the proposed 
DnCNN technique whereas the PCA obtained an SNR value of 
33.5dB, by the application of Eq. (15). 
 

In addition, to reassert the SNR enhancement, the computation 

of standard deviation (
2 ) per the various detected vibration 

points on the dataset by the application of Eq. (16) as expressed 
below; 

 2 var x y                                                                

where x represents the signal with noise, and 
desired signal without noise. We therein obtained 0.3198 and 
0.0116, as the values corresponding to the standard deviation of 
the original noisy signal and denoised signal respectively by the 
DnCNN denoising technique. Hence, the determinatio
SNR enhancement level was finally calculated by the 
application of Eq. (17).      

2

2
10 log10

x
SNR

y






 
  

 
                                                       

As a result, an approximation value of 21.6dB was obtained as 
the SNR enhancement by the proposed method whereas the 
PCA technique that obtained its y value of 0.0180 and 
0.3198 which represents the noisy signal, equally achieved an 
SNR enhancement value of approximately 18.5dB.The 
illustration of the measured simulated an
performance with respect to the proposed DnCNN and PCA are 
respectively shown in Fig.11 below. The performance of the 
proposed technique by visual impression lucidly outperformed 
that of the contested PCA. 
 

Fig  11(a) Original and fitted curve   (b) DnCNN denoised data with fitted curve 
(c) PCA denoised data with fitted curve

The root-mean-square-error (RMSE) values were equally 
executed to measure the performance of each of the contested 
methods by the application of Eq. (18) as 
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where the noisy data is represented as 

predicted or denoised signal. The DnCNNand PCA both derived 
values of 0.12, and 0.20 respectively.
 

CONCLUSION 
 

In this paper, a DnCNN based on Ф
vibration detection is demonstrated. The Ф
was acquired to train the DnCNN model of which it yielded the 
desired denoised outputs towards precised detection of the 
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error (RMSE) values were equally 
executed to measure the performance of each of the contested 
methods by the application of Eq. (18) as presented below. 
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where the noisy data is represented as ˆ
iy  and iy  indicates the 

predicted or denoised signal. The DnCNNand PCA both derived 
values of 0.12, and 0.20 respectively. 

In this paper, a DnCNN based on Ф-OTDR sensing data for 
vibration detection is demonstrated. The Ф-OTDR noisy data 
was acquired to train the DnCNN model of which it yielded the 
desired denoised outputs towards precised detection of the 
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vibration point along the sensing fiber. The proposed technique 
equally demonstrated significant performance with respect to the 
SNR enhancement, as well as a good range of RMSE and STD 
values. In order to justify the efficiency and efficacy of the  
proposed technique, it was tested against one key state-of-the-art 
(PCA) denoising technique which equally preserved good 
structural information for the vibration extraction. Emphatically 
stating, the proposed technique proved robust enough per the 
total annihilation of all the fading points compared to the 
principal component analysis approach. Per these meritorious 
and effectiveness of the proposed method, once a sensing 
system is settled on, the DnCNN is capable of effectively 
learning to adapt in order to produce the desired results. In 
conclusion, the application of deep learning is evolving very 
rapidly and the DnCNN denoising technique has practically 
demonstrated its capabilities in facilitating effective DOVS 
applications and could be replicated in other related fields of 
study.  
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