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A R T I C L E  I N F O A B S T R A C T

In this paper we restrict the real and imaginary parts of the coefficients of a polynomial and
find a region containing all its zeros. In addition to being generalizations of some known
results, our results give many other interesting results for particular choices of the
parameters.

INTRODUCTION
As for the region containing all the zeros of a polynomial with real monotonically decreasing positive coefficients, Enestrom and
kakeya proved the following elegant result known as the Enestrom-Kakeya Theorem [3,4]:
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Various generalizations and extensions of this result are available in the literature. Recently Gulzar [2] proved the following
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MAIN RESULTS
In this paper we prove the following result:
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For different values of the parameters in Theorem 1, we get different interesting results. For example, for

121  kk , Theorem 1 gives the following result:

Corollary 1: Let 
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Taking 0  in Theorem 1, we get the following result:

Corollary 2: Let 
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Lemmas

For the proofs of the above result, we need the following lemmas:

Lemma 1: Let f(z) (not identically zero)  be analytic for 0)0(,  fRz and ,0)( kaf nk ,......,2,1 . Then
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Lemma 2 is the famous Jensen’s Theorem (see page 208 of [1]).

Lemma 2: Let f (z) be analytic for 0)0(,  fRz and Mzf )( for Rz  . Then the number of zeros of f(z) in
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Lemma 2 is a simple deduction from Lemma 1.

Proof of Theorem 1
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This shows that those zeros of F(z) whose modulus is greater than 1 lie in
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Since the zeros of F(z) whose modulus is less than or equal to 1  already satisfy the above inequality and since the zeros of P(z)
are also the zeros of F(z) , it follows that all the zeros of P(z) lie in
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For 0,  RRz , we have
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In other words, F(z) does not vanish in
X
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That proves Theorem 1 completely.

References
1. L. V. Ahlfors, Complex Analysis, 3rd edition, Mc-Grawhill.
2. M.H.Gulzar, B.A.Zargar, A.W.Manzoor, Location of Zeros of Polynomials, International Journal of Computational

Engineering Research,Vol.7, Issue 3, March 2017, 9-15.
3. M. Marden, Geometry of Polynomials, Math. Surveys No. 3, Amer. Math.Soc.(1966).
4. Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, New York (2002).

*******

Please cite this article in press as:
Gulzar M.H (2017), On the Location of Zeros of Polynomials, International Journal of Current Advanced Research, 6(3), pp.
2351-2357
http://dx.doi.org/10.24327/ijcar.2017. 2357.0008


