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INTRODUCTION

A mathematical model is an abstract representation of a real-world phenomenon that uses mathematical language to describe the
behavior of a natural or physical system. Typically mathematical formula is used to describe the interactions of the various
components of the system by depending on two important different fields; these are the ecology and epidemiology. The ecology
is the branch of biology that deals with the relations and interactions between organisms and their environment, while the
epidemiology is the branch of medicine that deals with the incidence and prevalence of disease in large populations and with
detection of the source and cause of epidemics of infectious disease. These fields are studied extensively in literatures for long
time as separated fields. Anderson and May [1] were the first whose merged the above two fields and formulated Lotka-Volterra
predator-prey model with infection disease spread among prey by contact between them and no reproduction in infected prey.

In fact, the study of effect of infectious disease in ecological system is now becoming an important factor for regulating animal
and human population size. So in the last years; mathematical models have become extremely important tools in analyzing and
understanding the spread and control of infectious disease through the study of the different types from disease for example S,
SIS and SIR. Where some of infectious disease in the ecology system is transmitted by contact in same of species have proposed
and studied from some of researchers, Naji and Mustafa [4] studied a prey-predator model with Sl infectious disease in prey,
while Ramana Murthy and Bahlool [26] studied a prey-predator model with Sl infectious disease in predator. Moreover, there are
some of infectious diseases are transmitted in the species not only through contact, but also directly from environment. Majeed
and Shawka [2] studied prey-predator model with SI and SIS infectious disease in prey population and the disease transmitted
within the same species by contact and external source. In addition to Khalaf, Majeed and Naji [3] studied prey-predator model
with SIS infectious disease in prey population this disease passed from a prey to predator through attacking of predator to prey
and the disease transmitted within the same species by contact and external source.

The harvest rate has a strong influence on the dynamic development of the population, perhaps one of the most important hunting
the fish or eradication on the disease. Bhattacharyya and Mukhopadhyay [5] studied prey-predator model with harvest and
disease, and he assumed that the harvest can eradication the disease, also Bairagi el.at [6] studied prey-predator model with
harvest and disease ,and he assumed that the harvest can remove a parasite , In general, there are three kinds of harvesting
function [7, 8, 9] have been studied in the literature

1. Constant harvesting

K(x,V) = C,

where k(x, V) is the harvesting, C is a acceptable constant
2. Proportionate harvesting
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K(x,V) = qVx,
where q is the catchability of the species. V is the harvesting effect.

3. Nonlinear harvesting

qVx
b1V+byx !

K(x,V) =

where b,, b, are acceptable positive constants.

Some studies that address the population contain the harvest, Brauer and Soudack [10,11] studied a predator-prey model under
constant rate of harvesting. On other hand there are many studies includes disease and proportionate harvesting , Abd ul Satar[12]
studied a prey-predator model with disease SIS-type and harvesting on the prey and the predator , while Sujatha and Gunasekaran
[13], Wuhaih[14] and Agnihotri[15] studied a prey-predator model with disease SIS-type, Sl-type and harvesting in prey only, in
addition so many researchers have predator-prey systems that contain nonlinear harvesting functions [16- 19], while Some of the
studies using time delay with harvest were considered by Aiello and Freedman [20], Rosen [21] ,Freedman and Gopaisammy
[22], Cushing and Saleem [23].

Recently, Bera et al. [24] had proposed and studied a prey-predator model involving, Sl infectious diseases in prey and predator
species; in addition to the disease is not transmitted from a prey to predator or conversely. It is assumed that both the diseases
spread within prey and predator population by contact, between susceptible individuals and infected individuals. Furthermore, he
used linear functional response and linear incidence rate to describe spread both diseases.

In this section, an eco-epidemiological mathematical model consisting of prey-predator model involving Sl infectious diseases in
prey and predator species with harvesting in infectious population has been proposed and analyzed. Further, in this model, Holling
type-11 functional response for the predation of susceptible prey and linear functional response for the predation of infected prey
as well as linear incidence rate for describing the transition of disease are used. Our aim is to study the effect of harvesting on the
dynamics of disease propagation and eradication it.

MATHEMATICAL MODEL

In this section, an eco-epidemiological model is proposed for study. The model consists of a prey, whose total population density
at time T is denoted by N(T), interacting with predator whose total population at time T id denoted by P(T). It is assumed that
both the prey and the predator populations are infected by different infectious disease. Now, the following assumptions are
adopted in formulating the basic eco-epidemiology model:

1. There is an SI epidemic disease in both prey and predator population’s divides the prey population into two classes
namely S(T) that represents the density of susceptible prey at time T and I(T) which represents the density of infected
prey at timeT. Therefore at any time T, we have N(T) = S(T) + I(T). Also divides the predator population in to two
classes namely X (T) that represents the density of susceptible predator at time T and Y (T) which represents the density
of infected predator at timeT. Therefore at any time T, we have P(T) = X(T) + Y(T).

2. Itis assumed that only susceptible prey S is capable of reproducing in logistic growth with carrying capacity K>0 and
intrinsic growth rate constant r>0, the infected prey | is removed before having the possibility of reproducing. However,
the infected prey population | still contribute with S to population growth toward the carrying capacity.

3. The disease is transmitted within the same species by contact with an infected individual at infection rates g, > 0 and
B, > 0 for the prey and predator respectively.

4. The susceptible predator consumes the susceptible and infected prey according to Holling type-11 and Lotka-Volterra of
functional response with maximum attack rate a;, > 0 and half saturation rate b > 0 for susceptible prey and maximum
attack rate a, > 0 for infected prey respectively, while the infected predator consume the infected prey according to
Lotka-Volterra of functional response with maximum attack rate a; > 0 , and contribute a portion of such food with
conversion rates e; > 0;i = 1,2,3.

5. In the absence of the prey the susceptible and infected predator decay exponentially with natural death rate d, > 0.

6. The disease may causes mortality with a constant mortality rates d; > 0 and « > 0 for the infected prey and infected
predator respectively.

7. Finally, the infected populations are harvest with constant rates h, > 0 and h, > 0 for the prey and predator respectively.

8. According to the above assumptions, the proposed mathematical model can be represented mathematically by the
following set of first order non-linear differential equations.

ds ( s+1) 5 a,SX

ar - ) AT s

77 = BiSI = @IX — @Y — dy] = hy (2.1)
ax a,SX

d_T = elm +e,a,1X — B, XY —dy, X

day

T B XY + ezazlY — (d, + @)Y — h,Y

With initial conditions S(0) =0, I(0) =0, X(0) = 0 and Y(0) = 0.
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Note that the above proposed model has (16) parameters which makes the mathematical analysis of the system difficult. So in
order to reduce the number of parameters and determine which parameter represents the control parameter, the following
dimensionless variables are used:

— 5 . _
t—rT,x—k Y

Then system (2.1) can be written in the following dimensionless form:

dx CZ
sz(l—x—y—cly—cﬁx)=f1(x,y,2,W)
dy
i y(clx — ¢z —csw — (cg + c7)) =10, y,2z,w) (2.2)
dz CgX
E:Z(C3+x+(;9y—c10w—€11):fg(X,y,Z,W)
dw
dat = W(sz + Yy — (0 o3+ C14)) = fa(x,y,z,w)
Where
Blk al b azk a3k d1 h1 elal ezazk
125 G2 = ,Cg_k,C4 T e T TG = T T G T T
k d egaszk a h
C1o:%,6'11:72:€12: S ,6132:,614272

With x(0) =0 y(0) = 0, 2(0) > 0 and w(0) > 0.

represent the dimensionless parameter of system (2.2). It is observed that the number of parameters have been reduced from
sixteen in the system (2.1) to fourteen in the system (2.2).

It is easy to verify that all the interaction functions fy, f,, f3 and f; on the right hand side of system (2.2) are continuous and have
continuous partial derivatives on R% with respect to dependent variables x , y , z and w. Accordingly they are Lipschitzian
functions and hence system (2.2) has a unique solution for each non-negative initial condition. Further the boundedness of the
system is shown in the following theorem.

Theorem (2.1): All the solutions of system ( 2.2 ) which initiate in R% are uniformly bounded.
Proof.

Let (x(t),v(t),z(t),w(t)) be any solution of the system (2.2) with non-negative initial condition (x(0),y(0),z(0), w(0)).
According to the first equation of system (2.2) we have:

d

d_JLf <x(1-x)

Clearly according to the theory of differential inequality, we get:

lim,_,supx(t) < 1. Define the function
M(t) = x(t) + y(t) + z(t) + w(t)
Therefore

(c, —cg)xz
E<2x—x—263—+8x—(c4—cg)zy—(cs -
ci2)Wy — (cg + ¢7)y — ¢112 — (€11 + €3 + Cr)W

Now, since the conversion rate constant from prey population to predator population can’t be exceeding the maximum predation
rate constant of predator population to prey population, hence from the biological point of view, always cq < c,, ¢;,<cs and
cg < c,, hence it is obtained that:

aM .
ESZ—nM where n=min {1,¢c,+c¢;,¢1q1,¢11 +Ci3+Ciat.

Now, by using the comparison theorem [25] on the above differential inequality, we get that:
2 2

M) <—+ (M(O) - —) et
n n

Thus 0 < M(t) < %as t — oo. Hence all the solutions of system (2.2) are uniformly bounded and the proof is complete

2224



International Journal of Current Advanced Research Vol 6, Issue 02, pp 2222-2241, February 2017

Existence of equilibrium points

In this section, the existence of all possible equilibrium points of the system (2.2) is discussed. it is observed that , system (2.2)
has at most seven equilibrium points.

1. The vanishing equilibrium point E, = (0,0,0,0) always exist.
2. The axial equilibrium point E; = (1,0,0,0) always exist.

3. The predator-free equilibrium point E, = (x,5,0,0);

CcetC7 — C1—(C6+C7)
cq and Y= c1(c1+1)

where x =
exists a unique in the int. R2 of xy-plane provided that:
C1 > C6 + C7 (31)
4.The disease-free equilibrium point E; = (x, 0,2, 0);

where x = =21 and z'=c—3(1— C3C“)(1+ ‘11 )

Cg—C11 2 Cg—C11 Cg—C11

exists a unique in the int. R2 of xz-plane provided that:
CS > C11 (32)

cg > ¢11(1+¢c3) (3.3)

5.The infected-predator-free equilibrium point E, = (X,y,z, 0) exists and unique in the Int. R3 of xyz-space if and only if
there is a positive solution to the following set of equations

2z _
l—-x-— (1+cl)y—c3+x =0 (3.4)
ox—cz—(cg+c;)=0 (35)
CZixx +cy—c1; =0 (3.6)

From equation (3.5) we have,

zZ= é(qx — (¢ + C7)) (€X))
Also, from equation (3.6) we have,

y =5 (=22 (38)
Now, by substituting equations (3.7) and (3.8) in equation (3.4) we get:

M;x?+ M,x+M;=0 39
Where

M, = —c,cq

M, = c9(ca(1 = ¢3) — ¢16;) + ¢ (1 +¢1)(cg — €11)
M; = C3C4(C9 -1+ C1)) + ¢y¢9(c6 + ¢7)

Note that equation (3.9) has a unique positive root, namely ¥ provided that:
Co > c11(1+¢q) (3.10)

Substituting the value of X in (3.7) and (3.8) vyield that z(X) = Z and y(x) = ¥ which are positive if the following condition
hold:
= CcetCy

X >
C1

(3.11)

Cgﬂ?

e > (3.12)

Consequently, the infected predator free equilibrium point E, = (¥ ,¥,Z,0) of system (2.2) exists uniquely in the Int. R3 of xyz
—space.

6. The infected-prey-free equilibrium point Es = (X, 0, Z, w) exists and unique in the Int. R3 of xyz-space if and only if there is
a positive solution to the following set of equations:

C2Z

1—x-— pow =0 (3.13)
szfx — oW — ¢y, =0 (3.14)
€10z = (c11 +c13+¢14) =0 (3.15)
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From equation (3.14) we have,

Z — Cc11+Cc13+C14 (316)

€10
Now, by substituting equation (3.16) in equation (3.13) we get:
n1x? +yx +y3 =0, (317
Where

n=-1
Y2=1-¢
ca(Ciq + €13+ C14)

C10

V3 =C3—
Note that equation (3.17) has a unique positive root, namely % provided that:

ca(c11+c13+C14)
C3 > 2\C11 13 14 (318)
€10
_ X(cg—c11)—c3C11

Substituting the value of ¥ in (3.14) yield that w(%) =w = -
C10(C3+X)

which is positive if in addition of condition (3.2) the following conditions hold:

§> G (3.19)

Cg—C11

7. The positive (coexistence) equilibrium point Eq = (x*,y*,z* ,w*) exists if and only if there is a positive solution to the
following set of equations

€2z __
l—-x—(Q+c¢)y— pswve 0 (3.20)
x—cz—csw—(cg+¢;) =0 (3.21)
CZixx +Coy — coW—¢;; =0 (3.22)
C1oZ + 1y — (€11 + €13+ ¢14) =0 (3.23)

From equation (3.23) we have,

1
zZ= o ((Cn + i3+ Cpy) — C123’) (3.24)
Also, from equation (3.22) we have,

= (Z2E + cgy—cyy) (325)

C1p0 C3tX

Then by substituting equation (3.24) and (3.25) in (3.20) and (3.21) yield the following two isoclines:

€2

w =

((cr1+c13+c14)—c12Y)

g y)=1-x—(L+c)y -2 =0 (3.26)
c3+x
92(x,y) = cx — C% ((Cn +C13 1) — C123’) - Ccl_so (CC:_:CX + C9y_C11) —(ce+¢;)=0 .(327)

Now from equation (3.26) we notice that, when y — 0, then x — x,;, where x, represents a positive root of the following second
order polynomial equation:

Nyx?+ Nyx+ N;=0 , (3.28)
Where

Ny =¢g

N,=c;—-1

N3 = cy(cq1 + €13 + €a) — €364
Straightforward computation shows that equation (3.28) has a unique positive root namely x; if the condition (3.18) is hold.
Further, from equation (3.27) we notice that, when y — 0, then x — x,, where x, represents a positive root of the following
second order polynomial equation:
Bix* + Bx + B3 =0, (329)
where

By = c1649

By = —c4(c1q + €13 + C14) + €1C3C10 — C5(cg — €11) — C10(cs + ¢7)
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Bs = —c3lcy(cis + c14) + ci9(cs + ¢7) + c11(cs — c5)]

Straightforward computation shows that equation (3.29) has a unique positive root namely x, if the condition is hold.
€, > Cs (3.30)
Now, from equation (3.26) we have:
Z—i =— (aaiyl) / (aa%) . So, Z—i > 0 if one set of the following sets of conditions hold:

Gl 991 991 091
(E) >0,(%)<o00r (E) <0(%)>o0 (331)
Further, from (3.27) we notice that

Z—i =— (aaiyz) / (aa%) . So, Z—i < 0 if one set of the following sets of conditions hold:

99> 9> 99> 99>
(52)>0.(52) >0 or (52)<0.(52) <0 (3.32)

Then the two isoclines (3.26) and (3.27) intersect at a unique positive point (x*,y*) , if in addition the condition x, > x;
(3.33)

Now, by substituting the value of x* and y* in (3.24) and (3.25) vyield that z(y*) = z* and w(x*,y*) =w* which are
positive if and only if the following conditions hold:

C11 C11+C13+C14

<y*<
Co Y C12
Accordingly, the positive equilibrium point E, exists unique in Int R¥, if addition to condition (3.31 -3.34) the isocline g, (x,y) =
0 intersect the x-axis at the positive value namely x;

(3.34)

Local Stability Analysis

In this section, we analyzed the local stability of the model (2.2) around each equilibrium point and discussed through computing
the Jacobian matrix J(x,y,z ,w) and determined the eigenvalues of system (2.2) at each of them the Jacobian
matrix J(x,y, z,w) of the system (2.2) at each of them can be written:

04 9h  Oh  Oh]
0x dy dz ow
O, 0f 9k
0x dy dy 0w
] = : (41)
O 0 9k
0x dy dz ow
o O h Oh
| 0x dy dz  owl

Where f; ; 1,2,3,4 are given in system (2.2) and

2fy 36z 0fy of; X 0f
—=1-2x-(1+ - —=—-(1+ —_—=— —=
ox X ( Cl)y (C3+x)2 1ay ( Cl)x aF C3+x’aW )
%=c %=cx—cz—cw—(c +c)%=—c %=—c

ox 1Y "3y 1 4 5 R rr 1Y "ow 5V

Ofs_ &z  Ofs_ . O X o OB
ox  (c3+x)? 'dy % 0z c3+x oY ™ ‘1o 1 gw 1o
0f. 0f. 0f. 0fs

6_9: =0 '6_; = C2W '6_24 = CioW, a_V: =10z + €12y — (11 F 013+ Cy4)

Stability of equilibrium point E, = (0,0, 0,0)
The Jacobian matrix of system (2.2) at E, can be written as,
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[t 0 0 0 1
IO —(cg+c;) O 0 I
Jo =J(Ey) ZIO 0 e, 0 |
0 0 0 —(cq +euz+cu4)

Then the characteristic equation of J(E,) is given by:

Q- (cs+c, +A)(ciy + )11 +cy3 +cu) +4) =0,
So, the eigenvalues of J, are 15; = 1,2y, = —(cg + €5), 193 = —¢;4 and
Aos = (c1q + €13+ ¢14)

Thus, the equilibrium point E; is unstable.
Stability of equilibrium point E; = (1,0, 0,0)

The Jacobian matrix of system (2.2) at E; can be written as,

C
[-1 —Q+¢) e 0 1|
0 ¢ —(cg+c 0 0
J=J(E) =| pmGre) |
l 0 0 C3—+1 —C11 0
0 0 0 —(cy1 + 13+ €14)

Then the characteristic equation of J(E;) is given by:

C
(1"'/1)(6'6+C7_C1+/1)(C11_C3—_7_1+/1)((C11+C13+C14)+/1) =0

Cg

So, the eigenvalues of J; areA;; = —1,4;, =¢; — (¢ +C;), A5 = —7 and
3

A1a = (c1q + ¢35+ C14).
Thus, the equilibrium point E; is locally asymptotically stable in the. R%, provided that:

Ce +c, >
C1q > 03%
However, it is a saddle point otherwise.

Stability of equilibrium point E, = (x, 7,0, 0)

The Jacobian matrix of system (2.2) at E, can be written as,

J2 =J(E) = [ky],

Where
Gt @+ +cy) _ cleg*cy) _
kll__ yIt1p — — ) 13—_—,](14—0,
€1 €1 €13+ ¢+ ¢y
_6t— (cs + ;) _ _ G — (cs +¢7) _ G — (cs + ¢7)
k21—T ko =0kys =——\——F—"— ) ku =7\ ——7 ).
1 1 1+¢ 1 1+¢

cg(cg +C CyfCc; — (g T+
km:o,kn:o,k%:MJr_‘)(M

— €11, k34 =0,kyy =0,ky, =0,
cic3+cgt+e;, ¢ 1+c¢ ) 11734

— _ ¢12 (c1—(ce+c7)
kys = 0,kyy = o (T) — (11 + €13 +cqa).
1 C1

Then the characteristic equation of J(E,) is given by:
[22+B A+ B, (kys —A)(kyy—A) =0,
where:

By =—ky; >0

By = —kyi3k;1 >0

So, either

(k33 _A)(k44 -1) =0,

which gives two of the eigenvalues of J(E,) by:

2228
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A3 = k33 < 0, provided that

ey > cglcetcy) 1% (01—(06"'07)) , (4.7)

cic3tcgtcy Ccq 1+cq

and 4,, = k,, <0, provided that

c12 [c1—(ce+c7)
%12(—1 1+6€1 ’ ) < (€11 * €13 +C14) (48)

Or
A2+B, A+B, =0

which gives that other two eigenvalues of ], with negative real parts which are

1 ,

Ay = E(_Bl + |BZ— 4B, )
1 ,

Ayy = E(_Bl — |BZ—4B, )

So, equilibrium point E, is locally asymptotically stable in the . R% . However, it is unstable otherwise.
Stability of equilibrium point E; = (x,0, z,0)

The Jacobian matrix of system (2.2) at E; can be written as,

Js =J(Es) =z, (4.9)
Where
Zn = x(_l +(C3Cj_—zx-)2)xz12 = - +c)x, z13= _C:Z-ffc 1214 = 0,25, =0,
Zyy =X — 7 — (Cg+€7) 233 = 0,25, = 0,23, = &,Zsz = CoZ,233 =0,
(c5 +x)?
Z34 = —C10Z, Z41 =0, Z4p = 0,243 = 0,244 =102 — (11 + €13 + C1a).
Then the characteristic equation of J(E5) is given by:
[22+ViA+V,]1(kyy —2)(kya —2) =0,
where:
V,=-2z,>0
Vy, = —=21323, >0
So, either
(232 =A)(24y—2) =0, (4.10)
which gives two of the eigenvalues of J(E;) by:
A3y = 75, <0, provided that
o x <cz+ (¢ +cy), (4.11)
And A5, = z,, <0, provided that
€102 < (€11 + €13+ €14) (4.12)

Or
A+V,A+V, =0

which gives that other two eigenvalues of J; with negative real parts which are,

1 2

/131 = E _V1 + V1 - 4V2
1 2

/133 = E _V1 - V1 - 4V2

The equilibrium point Ej is locally asymptotically stable in the . RS . However, it is unstable otherwise.
Stability of equilibrium point E, = (X,y,2,0)

The Jacobian matrix of system (2.2) at E, can be written as,
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Ja=J(E) =dy],_, . (4.13)
Where
_ CZJTE _ sz =

dyy =— (c; + %)% dip = =1 +c)kx di5 = _m’du =0, d;1 = ¢1y,dy, =0,
by = =5y = G dyy =~ =7 e = 0.dyy = 107 gy = O

23 — —C4Y dzq = —C5Y, 3_1—(6,3__'_;)2 1 A3z = CgZ ,033 = U,d34 = —C19Z,041 = U,
dyy; =0,dy3 =0, dyy =¢10Z + ¢15Y — (€11 + €13 +C14)
Then the characteristic equation of J(E,) is given by:
[22+U, 22+ U,A+U;](dyy— 1) =0, (4.14)
Where
Uy =—dy;
U2 = _(d12d21 + d13d31 + d23d32)

U3 = _(d13d21d32 + d23d12d31) + d23d11d32

So, either
(dy, — 1) =0, which gives (4.15)
Agq = dyy <0, provided that
C10Z *+ €12V < (€13 + €13 +C1q) (4.16)
Or
[AB+U; 22+ U0+ Us], 4.17)

Using Routh Hurwitz criterion equation (4.17) has roots (eigenvalues)with negative real parts if and only if U, > 0,U; > 0 and
U,U, —U; > 0.

Now U; > 0, provided that

(¥4

ot (418)
Also, due to condition (4.18) we obtain that U; > O provided that:
€162C9 > €4(1 + ;) CC:; (4.19)

Further, it is easy to check that:

U1U2 - U3 = d11d12d21 + d23d12d31 + d13(d21d32 + d11d31)

Clearly, the second terms is positive while the third term is positive under the condition

d21d32 < _d11d31 (420)

Hence U,U, — U; > 0.
So, all the eigenvalues of J(E,) have negative real part under the given conditions and hence E, is locally asymptotically stable.
However, it is unstable otherwise.

Stability of equilibrium point E5 = (¥,0,Z, W)

The Jacobian matrix of system (2.2) at E; can be written as,

](ES) = [rij]4x4’ (421)
where

C,XZ X
= — 2 , == +c)x 1 =— z T4 = 0,15, =0,

—— 7
(c;+%)2 "1 €3+ X

~ ~ ~ c3cgZ ~
Ty =X —CuZ —csW — (Cg+ ;) 153 =0,15, =0,13, = (c33+98?)2 \Typ = CoZ ,T33 =0,
T34 = —C10Z, Ty1 = 0,13y = oW, 143 = C1oW, 74y = €10Z + 12V — (11 + €13 +C14) -
Then the characteristic equation of J(Es) is given by:
[A3+Q, A2+ QA+ Q3](ry, — 1) =0, (4.22)
where
Q=—m,
Qy = —(ry3731 + T34743)
Q3 = M1T34733
So, either

2230



International Journal of Current Advanced Research Vol 6, Issue 02, pp 2222-2241, February 2017

(rp,—4)=0 (4.23)
Aya =15 <0

provided that :

X <cZ+ e+ (cg +¢y) (4.24)
Or

[23+Q, 22+ Q,A+Q5] , (4.25)

Using Routh Hurwitz criterion equation (4.25) has roots (eigenvalues) with negative real parts if and only if Q; >0, Q; > 0 and
Q1Qz - Qs > 0.

Now, Q; >0 ,Q; >0and Q,Q, — Q3 =1y373,77; > 0, provided that
CcZ (426)

(C3 +f)2

So, all the eigenvalues of J(Es) have negative real part under the given conditions and hence E; is locally asymptotically stable.
However, it is unstable otherwise.

Stability of Equilibrium point Eg = (x*,y* ,z* ,w*)

The Jacobian matrix of system (2.2) at E; can be written as,

J(Eq) = [lij]4x4 , (4.27)
where
lijg = —x" +L*Z* iy =—Q+cdx" s = _Cz—x*’ ha =0l =1y [, =0,
(c3 +x*)? c3+x*
C3CgZ”
Lz =—cy" I = =5y 15 = (C?,'"—X*)Z ag = ¢oZ" 133 =0, I3, = —¢102", 14 = 0,

lyz = €1oW Lz = ¢1qW", 14y = 0.

Then the characteristic equation of J(Ej) is given by:

A*+ N ABB+N, A2+ NzA+N, =0, (4.28)
where

Ny = -l

Ny =py+py+ps+py+ps

N3 = (ps — Li1p1) + p7 + p1o — L1 (P2 + p3)

Ny = (=lL1pe + p1p4) + (Psp3 — Po) — (Ps + L11P10)

With

P1= —laalys, po = —l3las s p3 = —Lylay , pa = —lizlp1 4 ps = —l31 143,

Pe = —laslzalay , p7 = —lizlyslsy — lislyilsn, pg = lizlhslsilazpe = lislyil3alss
P10 = —laalzolys .

Now by using Routh Hurwitz criterion all the eigenvalues, which represent the roots of eq. (4.28), have negative real parts if and
onlyif N, >0,N; >0, N, >0and A= (N,N, — N;)N; — N2 N, >0 . Clearly N, >0, provided that

L (4.29)

(c3+x*)?
Hence N; > 0, provided that:
Nycip > cucq,y" ,and (4.30)
€16, (x* + ¢3) > (1 + ¢y)cscycq, (4.31)

while N, > 0 provided that :

C4C12N1 C3Cs5Cg
Gaon < €610 < Cor)? and (4.32)
coN; > (1 + ¢)czcgx” (4.33)

Straight for word computation shows that:

A= 13,p4(p2 + p3) + B1ps(p1 + p2) — peNs + [1pg + 1§, (Li1p1o + pg) + l11pe(l%1 —(ps + ps))
+ (p7 + p10) (N1 (ps + ps) — N3)

2231



International Journal of Current Advanced Research Vol 6, Issue 02, pp 2222-2241, February 2017

Clearly, the first five terms are positive under conditions (4.29) — (4.31) while in addition to conditions (4.29) — (4.31) the last
second terms are positive provided that:

< (py+ps) <NP . (4.34)

Hence A= (N;N, — N;)N; — N2 N, > 0.

So, all the eigenvalues of J(E,) have negative real part under the given conditions and hence E is locally asymptotically stable.
However, it is unstable otherwise.

Global stability analysis

In this section the global stability analysis for the equilibrium points, which are locally asymptotically stable of system (2.2) is
studied analytically by use the suitable of Lyapunov method as shown in the following theorems.

Theorem (5.1)

Assume that the disease and predator free equilibrium point E; = (1,0,0,0) of system (2.2) is locally asymptotically stable in
the R%.Then E; is globally asymptotically stable provided that the following condition hold:

B =B, (5.1)

where B, = [(x — 1) "'%}’]2 +wy(cs — ¢1p) +cyz and B, = Ccfx + iyz :
3

Proof: Consider the following function

Gi(x,yzw)=(x—1—Inx)+y+z+w
It is easy to see thatG, (x,y,z,w)e C*(R%,R), and G,(E;) =0, and G, (x,y,z,w) > 0;
Vv(x,y,z,w) # E; . Now by differentiating G, with respect to time t and going some algebraic handling, given that:

== D+ 511+ yer— o+ e) + 2y(es — ) +

1
wy(ciz —¢s) — (112 + (€11 + €3 + cr)w) + G+ x + Zyz
Now, due to the facts ¢, > ¢4, ¢s > ¢;, that are mentioned in theorem (2.1) and condition (4.3) we obtain that:
dG,

dt

1 1
<—[(x—1)+§y]2—wy(c'5—Clz)—cnz+ +Zy2:_ﬁ1+ﬁz

c3+x
Thus, % is negative definite and hence G, is Lyapunov function under the condition (5.1). So E; is a globally asymptotically
stable and then the proof is complete

Theorem (5.2)

Assume that the predator free equilibrium point E, = (x,y,0,0) of system (2.2) is locally asymptotically stable in the
R%.Then E, is globally asymptotically stable provided that the following conditions hold:

B> B, (5.2)

where B, =[(x — %) + %(y =M+ (cg — Cz)% +wy(ciz — ¢s5) + zy(co — ¢4) — €132 + W(—c1,y + (i1 + ¢35+

5 CoXZ _ _ 1 _
c14) and ﬁz:C:+X+C4}’Z+C5Wy+z(y_}’)2-

Proof: Consider the following function

x
Gz(x,y,z,w)=(x—f—fln;)+(y—37—37ln§)+z+w

It is easy to see that G, (x, y,z, w)e C*(R%,R), and G,(E,) =0, and G, (x,y,z,w) > 0;
Vv(x,y,z,w) # E, . Now by differentiating G, with respect to time ¢t and going some algebraic handling, given that:

daG C,XZ
—2:—(x—f)z—(x—f)(y—y)—(x—f) - x_CSW(Y_y)_QZ(Y_}_’)"' + CoYZ — C11Z + Cipwy

dt c3 +

—(c11 + i3+ c)w iz(y - y)?

1
<[ =R+ 30 =P+ (e — )

CgXxz
c3+x

dG,
dt

Xz Xz
+

+ wy(cy, — ) +zy(cg — ) — 112+ wW(Cy, Y
G+ X Catx y(cy; 5) y(co ) 11 (c12y

—(c11 + ¢33+ 014)) H Yz + cswy +Z(y —¥y)*=—-B, + B,
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Thus, ddi: is negative definite and hence G, is Lyapunov function under the conditions mentioned in theorem
(2.1), (5.2)and (4.8). So E, is a globally asymptotically stable and then the proof is complete

Theorem (5.3)

Assume that the disease free equilibrium point E; = (x,0,2,0) of system (2.2) is locally asymptotically stable in the R%.Then
E5 is globally asymptotically stable provided that the following conditions hold:

By > B (5.3)

2

(C2X+ C8C3 C2C3) oz

[ 03(03+X) <4(- C3(c3+x)) ! (5.4)
CZ

c3(c3+x) <1 (55)

2
s z . . 1 1 .
where f, = | /(1 — 2 ) =D+ =) (e — )+ wylens — ) — (6 + ey =22 w( ey -

(ci1 o3+ C14)) and B, = (L + ¢y + (z — 2)?

Proof: Consider the following function
X z
Gs(r,y.zw)=(x—%—x ln;) Y +ap(z =72 = 2n) + dw

where a;,i=1,2,3 are positive constant to be bent on. It is easy to see that G;(x,y,z, w)e C*(R%,R) ,and G3(E;) =0, and
G;(x,y,z,w) >0;V(x,vy,z,w) # E; . Now by differentiating G; with respect to time ¢t and going some algebraic handling, given
that:
dGs _ 2 N2 . . . . . . .
o ( - m) (x — %) + (x —2)y(dc; — L+ ¢;) ) +aexy — ay(ce + ¢;)y + zy(azco — drcy)
(sz + d2C8C3 - C2C3)

(c3 +x)(cs + %)

+wy(ascy, —dgcs) + (x —%)(z — 2) — aycoyz + ciowz(ds — a,) + a3 W2
—az(cyy +ci3 + 1w

So by choosing the constants

. . . 1+cq
a, =a, =as = o we get:
., 1+
dG, €2 ) . 1+¢ (sz + CgC3 — C2C3)
—— =15 (= %)+ (L + )y - o)y + N
dt ( G+ 0+ 0 (x — %)+ (1 +c)xy o (c6 +c7)y D) (x —%)(z—2)
1 +c l+¢ l+c l+c¢
Z}’(Cg —C4)+—W}’(C12 _Cs)— . 1C9yz'+ - 1(6102'— (C11 T +C14))Wi(Z—Z)2

1 1

ac 1 .
@< [J0-225) e x)+(z—z)] £ L2y — ) + wyless = ) = (cg + eyl + 22 w( ey -

(C11 +C3t+ C14)) +(1+c)ty + (2 —2)*=—Pp, + b,

Thus, ddi: is negative definite and hence G; is Lyapunov function under the conditions mentioned in theorem (2.1), (5.3) —
(5.5)and (4.12). So E; is a globally asymptotically stable and then the proof is complete B
Theorem (5.4)

Assume that the infected predator free equilibrium point E, = (X,y,z,0) of system (2.2) is locally asymptotically stable in the
R%.Then E, is globally asymptotically stable provided that the following conditions hold:

y = i 1B=1 >ﬁ=2 1 (56)
(¥4
C3(C3+9?) < 1 (57)
(¥4 (¥4 —cyc3+CX+cges 2
2 (1 - C3(C3+9?)) = 1, 2 (C3(C3+9?)) = ( (C3(C3+9?)) ) ! (58)
(co — ) <4 (5.9)

where f, = [ F- ) =D+ 0 -] + [ F1- o) = D= G- D] ~ (el + cuF — (e e +

C14)) w+w(y —y)(cs = ¢p3)
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B, =y -3 +(z- D>

Proof: Consider the following function

).

Where @;,i=1,2,3 are positive constant to be bent on. It is easy to see that G,(x,y,z, w)e C*(R%,R) , and G,(E,) =0, and
G,(x,y,z,w) >0;VY(x,y,z,w) # E, . Now by differentiating G, with respect to time ¢ and going some algebraic handling, given
that:

G, C,Z
dt (c3 +x)(c3 +%)

CEr B0, g4ty e+

WSY = y)(@3c1, — @yc5) + C10VL’Z(C=12 - C=l3)_+ Ay CigWZ + A3C1,Wy
—a3(c;1 ez o dwx (Y =) x(z - 2)?

So by choosing the constants

. .. X _ - -
G4(x,y,z,w)=(x—f—fln§)+dl(y—37—37ln

<

By(z—Z—ZIn>) + Tzw

)(x—f)2 +(x—B@ -y -1 +c))+

a,=a,=a=1,

dG4 [ / 03(C3+x) (x X)+ (- }’)] [ / 03(C3+x) (x x)—(z - Z)] + ( C10Z + 12y — (c11 +C13 +

C14)) w+[(y=y)+ -2 +wly —y)c, —c5) = 31 +ﬁz
Thus, ddi: is negative definite and hence G, is Lyapunov function under the conditions mentioned in theorem (2.1), (5.6) —

(5.9)and (4.16). So E, is a globally asymptotically stable and then the proof is complete W

Theorem (5.5)

Assume that the infected prey free equilibrium point E5 = (%,0,Z,Ww) of system (2.2) is locally asymptotically stable in the
R%.Then E; is globally asymptotically stable provided that the following conditions hold:

w = W, El = EZ 1 (510)
~ Ca 1+cq _ 2 _ cZ
(2 + “ e 6e) >4 (1 s (CM)) , (5.11)
CcZ
c3(c3+%) <1 (5.12)
C5Cg = C4Cp3. (5.13)
where

2

- 1+¢, )
B = \](1 cg(cg )) x-0+z-2)| - ;C y(W — W)(cycyy — CoCs) —

1+c¢
€1
B, = (z — 2)?

Proof: Consider the following function

y(cla? — ¢ 7 —csW — (cg + c7))

Gs(r,y,zw) = (x =2 =% %)+ &y +Gy(z — 2 — 2In)+ dy(w— W — Win2)

Where @;,i=1,2,3 are positive constant to be bent on. It is easy to see that ,Gs(x,y, z,w)e C*(R%,R) , and Gs(Es) =0, and

Gs(x,y,z,w) >0;V(x,v,z,w) # Es .Now, by differentiating G5 with respect to time t and going some algebraic handling, given
that:

dGs _ 7 o ~ _ 5 _ _

ar —( - m) (x =22+ (x = D)y(@0, = A+ ) I+ @ y(e X = ¢4 — s — (c5 + ¢7))

(Cz.i: + 62C8C3 - C2C3)

(c; +x)(c; + %)
+ ¢c;o(w—W)(z — 2)(d; — a,)

So by choosing the constants

(x = %)(z — 2) + (z — D)y (Gyc9 — Tycy) + y(W — W) (@3¢12 — TyC5)

2234



International Journal of Current Advanced Research Vol 6, Issue 02, pp 2222-2241, February 2017

~ _ 1t o~ o __ Gy lic .
a, = o z—ag—cg—cl,weget,
dGs ( 7 +c (x—%)(=z-2) c,l+¢
—<—|1- ~)x—x2+ X —cZ—csw—(cg +c +—~( X ——cc—cc)
dt s (cs + %) ( ) }’( 1 4 5 (cs 7)) ca(cs + %) 2 & gC3 2C3
1+¢ ~ .
+ yw = W)(csc1z — Coc5) £ (2 — 2)?

2

%<_J(1 CZ—Z)(x—f)+(z—Z) +1Jcrcly(w—\7V)(C4clz—Cng)

dt " cses + %) 1

+cq

+(z -2+ y(ClJ? —c 72— csW —(cg + C7)) =—p +p,

1
Thus, ddi: is negative definite and hence Gs is Lyapunov function under the conditions (5.10) — (5.13)and (4.24). So Eg isa

globally asymptotically stable and then the proof is complete
Theorem (5.6)

Assume that the positive equilibrium point £, = (x*,y*,z* ,w*) of system (2.2) is locally asymptotically stable. Then Ej is
globally asymptotically stable in the R% . provided that the following conditions hold:

ﬁq , (5.14)
xy Cq 1HC _ 2

e RO ) €1

i (2-5)<2 o

B> B . ©17

Where

2

ﬁf=\k1 ) - x) — =)+

B c3(cs +x*)

B =(z-2z)+Ww—-wH?

Proof: Consider the following function

Ge(x,y,z,w) = (x—x*—x* ln£)+a1(y—y*—y* ln£)+
x* y*

z w
a(z—z"—z" ln;) +as(w—w"— w*lnw*)

where a;,i=1,2,3 are positive constant to be bent on. It is easy to see that ,G¢(x,y, z,w)e C*(R%,R) , and G¢(E¢) = 0, and
Ge(x,vy,z,w) >0;V(x,v,z,w) + E4 . Now by differentiating G, with respect to time ¢t and going some algebraic handling, given
that:

da, 2" *)2 * Y(aj 5
d_t6=—( (c3 +x)(cs +x*))(x_x) + oW —w)(z —2")(a; —a3) +

(x=x)@y -y )WNajc, — A +¢c))+ @ —y)z-z)azco —ajc,) +

(x—x)(z -2+ (v —y)w —w)(aze,; — ajcs)

(cx™ + ajcges — cyc3)
(c3 +x)(c5 +x7)

So by choosing the constants

1+cq % cy 1+cq % cs 1+cq
a; =—,a;, =— a; = — we get:
1 g 2 Cg C1 s c1z ¢1 g
*
%:—(1— S *)(x—x*)2+C1ol+cl(w—w*)(z—z*)(c—5—c—4)
dt (c3 +x)(cz +x7) G Ci2 G

c,l+c
(czx* T CsC3 T CaCs
9 1

(c3 +x)(c5 +x*) (c=—xYz-2z)x(@z-z) xWw-w)
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2

ﬂi<_-j@'"lzz_d(x—f?—@—Z? —w-w)+[z-z)+W—-w)*=-B;+B;

dt " caes +x7)

Thus, ddi: is negative definite and hence G, is Lyapunov function under the conditions (5.14) — (5.17). So Ej is a globally
asymptotically stable and then the proof is complete

Numerical simulation

In this section, we confirmed our obtained results in the previous sections numerically by using Runge Kutta method along with
predictor corrector method. Note that, we use turbo C++ in programming and matlab in plotting and then discuss our obtained
results. The system (2.2) is studied numerically for different sets of parameters and different sets of initial points. The objectives
of this study are: first investigate the effect of varying the value of each parameter on the dynamical behavior of system (2.2) and
second confirm our obtained analytical results. It is observed that, for the following set of hypothetical parameters:

¢, =05,¢,=04,¢3=04,c,=05,c5=03,¢c,=001,c, =01 } 6.1)
cg =03,c=04,¢,p=05,¢;,;, =001,¢,, =0.2,¢;5 =001,¢;, =01 '
a b
1 T T 14 T T T
x started at 0.1 y started at 0.3
0.9H x started at 0.6 H 120 y started at 0.8 |
X started at 0.8 : y started at 1

0.8 x startedat 1 | y started at 1.2
5 x started at 1.2 1k y started at 1.4 ||
z 07 - B &
H E
o 2 L i
; 0.6 1 g 08
g 5
e 05 1 < 06f 1
2 B
[ 8 2

4 4 g N
% ’ = o4} “;\‘\\\ ]

0.3 1 j\” \\ \ H

0.2 B ]
0.2 B 57
0.1 L L I I L L I o= | | L L |
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Time Time
c d
1.4 T 35

z started at 0.2 w stared at 0.6
12 z started at 0.7 3 wstarted at 1.1 | |

z started at 0.9 I w started at 1.3
. z started at 1.1 “ w started at 1.5
_% 1L z started at 1.3 || 5 25 wstarted at 1.7 |
El k|
2 2
S o8l 1 g8 2 1
2 2
ES ©
: E
o 06f \ 1 s 15 1
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g 0y | 3
2 04f Iy £ 1ry 1
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Fig 1 Time series of the solution of system (2.2) that started from five different initial points (0.6,0.8,0.7,1.1) , (0.8,1,09,13), (1,1.21.1,15),and
(1.2,1.4,1.3,1.7) for the data given in (6.1). (a) Time series of the trajectories of susceptible prey x , (b) Time series of the trajectories of infected prey y, (c)
Time series of the trajectories of susceptible predator z, (d) Time series of the trajectories of infected predator w.

Clearly, figure (6.1) shows that system (2.2) approaches asymptotically to the positive equilibrium point E, = (0.688, 0.164,
0.174, 0.491) starting from five different initial points and this is confirming our obtained analytical results.

Now, in order to discuss the effect of the parameters values of system (2.2) on the dynamical behavior of the system, the system is
solved numerically for the data given in (6.1) with varying one parameter at each time and sometime two parameters the obtained
results are given below.

The effect of varying the infection rate of prey in the range 0 < ¢; < 0.37 keeping other parameters as data given in (6.1) ,
causes extinction in the infected prey and the system will approach to the infected prey free equilibrium point as shown in the
following figure. However for 0.37 <c¢; <15, it is observed that system (2.2) still approach asymptotically to the positive
equilibrium point.
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3.5 T T
Susceptible prey x
Infected prey y
3r Susceptible predator z ||
Infected predator w
2.5+ 1

Population

Fig 2 Time series of the solution of system (2.2) approaches asymptotically to the infected prey free equilibrium point Es = (0.92,0,0.24,0.39) for the data given
in (6.1) with ¢;, = 0.3.

The effect of varying the predation rate on susceptible prey in the range 0.3 < ¢, < 1.45 keeping other parameters as data given
in (6.1) is studied, it is observed that system (2.2) still approach asymptotically to the positive equilibrium point, while increasing
this parameter further 1.45 < ¢, causes extinction in the infected prey and the system will approach the infected prey free
equilibrium point. On other hand varying the half saturation rate in the range 0 < ¢; < 1.5 keeping other parameters as data
given in (6.1) is studied, it is observed that system (2.2) still approach asymptotically to the positive equilibrium point. Moreover,
varying the predation rate on infected prey in the range 0.4 < ¢, < 0.97 keeping other parameters as data given in (6.1) is studied;
it is observed that system (2.2) still approach asymptotically to the positive equilibrium point, while increasing this parameter
further 0.98 < ¢, < 1.5 cause’s extinction in the infected prey and the system will approach to the infected prey free equilibrium
point.

The effect of varying the predation rate on infected prey in the range 0.2 < ¢ < 0.58 keeping other parameters as data given in
(6.1); it is observed that system (2.2) still approach asymptotically to the positive equilibrium point, however for 0.59 < ¢ < 1.5
cause’s extinction in the infected prey and the system will approach the infected prey free equilibrium point.

The effect of varying the death rate of the infected prey due to disease, in the range 0 < ¢, < 0.124 keeping other parameters as
data given in (6.1) is studied, it is observed that system (2.2) still approach asymptotically to the positive equilibrium point,
however increasing this parameter further 0.124 < ¢, < 1 causes extinction in the infected prey and the system will approach the
infected prey free equilibrium point.

The effect of varying the harvesting rate of infected prey, in the range 0 < ¢, < 0.214 keeping other parameters as data given in
(6.1) is studied, it is observed that system (2.2) still approach asymptotically to the positive equilibrium point, however increasing
this parameter further 0.215 < ¢, < 1 causes extinction in the infected prey and the system will approach the infected prey free
equilibrium point.
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3r Susceptible predator z ||
Infected predater w
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15
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L L L L
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X 104

Fig 3 Time series of the solution of system (2.2) approaches asymptotically to the infected prey free equilibrium point Es = (0.92,0,0.24,0.39) for the data given
in (6.1) with ¢, = 0.3.
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Now by varying the conversion rate of the susceptible prey from susceptible predator, in the range 0 < ¢z < 0.4 keeping other
parameters as data given in (6.1) is studied; it is observed that system (2.2) still approach asymptotically to the positive
equilibrium point, however cg < 0.012 and ¢; < 0.1 keeping other parameters as data given in (6.1) is studied; it is observed that
the solution of system (2.2) approaches asymptotically to the axial equilibrium point as shown in the following figure.

3.5

Susceptible prey x
Infected prey y

Susceptible predator z ||
Infected predator w

28] ,

Population

Lo
|
|

[ “
0.5 |

0 N~ . . . . . . . .
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time

Fig 4 Time series of the solution of system (2.2) approaches asymptotically to the axial equilibrium point E; = (1,0, 0,0) for the data given in (2.1) with ¢, =
0.09 and cg = 0.01.

The effect of varying the conversion rate of the infected prey from susceptible predator, in the range 0 < ¢, < 0.5 keeping other

parameters as data given in (6.1) is studied; it is observed that system (2.2) still approach asymptotically to the positive
equilibrium point.

The effect of varying the infection rate of predator in the range 0.1 < ¢;, < 0.35, causes extinction in the infected prey and the
system will approach the infected prey free equilibrium point as shown in the following figure. However 0.35 < ¢;, <0.95

keeping other parameters as data given in (6.1) is studied, it is observed that system (2.2) still approach asymptotically to the
positive equilibrium point.
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Fig 5 Time series of the solution of system (2.2) approaches asymptotically to the infected prey free equilibrium point Es = (0.84,0,0.48,0.77) for the data given
in (6.1) with ¢;, = 0.25.

Similarly, for the data given by Eq(6.1), the effect of varying the death rate of the predator, in the range 0 < ¢;; <0.168
keeping other parameters as data given in (6.1) is studied; it is observed that system (2.2) still approach asymptotically to the
positive equilibrium point, while for 0.168 < ¢;; < 0.2 causes extinction in the infected prey and the system will approach the
infected prey free equilibrium point, further for c;; = 0.2 the solution of the system (2.2) approaches to the disease free
equilibrium point as show in the Fig(6.6a) ;additional for 0.2 < ¢;; < 0.31 causes extinction in the infected predator and the
system will approach the infected predator free equilibrium point as show in the Fig(6.6b), finally 0.31 < ¢;; < 1 the solution of
the system (2.2) approaches to the predator free equilibrium point as show in the Fig(6.6c).

2238



International Journal of Current Advanced Research Vol 6, Issue 02, pp 2222-2241, February 2017

a b
25 T T T 25 T T T T
Susceptible prey x Susceptible prey x
Infected peey y Infected pery y
Susceptible predator z Susceptible predator z
2r Infected predator w 2 Infected predator w
1.5F ~ 15 ~
f= f=
k=l k=l
ks ks
=] =]
Q Q
o o
& B & B
\ 7\
AN e ———
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time Time
c
1.8 T T T T
Susceptible prey x
1.6+ Infected prey y H
Susceptible predator z
1.4+ Infected predator w H
1.2F B
s 1f 1
k<l
2
o 0.8 i
Q
0.6 N i
0.4 4
0.2 =
\
ol . , L ; | | I I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time

Fig 6 Time series of the solution of system (2.2) for the data given in (6.1) with different value of ¢;; : (a) globally asymptotically stable of the disease free
equilibrium point E; = (0.8,0,0.6 ,0) for ¢;; = 0.2, (b) globally asymptotically stable of the infected predator free equilibrium point
E, = (0.719 ,0.067,0.499,0) for c;; = 0.25, (c) globally asymptotically stable predator free equilibrium point E, = (0.22,0.52,0,0) for ¢;; = 0.6.

The effect of varying the conversion rate of the infected prey from predator, in the range 0 < ¢;, < 0.3 keeping other parameters
as data given in (6.1) is studied; it is observed that system (2.2) still approach asymptotically to the positive equilibrium point. On
the other hand varying the effect of the death rate of the infected predator due to disease, in the range 0 < ¢;; < 0.09 keeping
other parameters as data given in (6.1) is studied; it is observed that system (2.2) still approach asymptotically to the positive
equilibrium point, however for 0.1 < ¢;; < 0.41 causes extinction in the infected prey and the system will approach the infected
prey free equilibrium point as shown in the following figure.
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Fig 7 Time series of the solution of system (2.2) approaches asymptotically to the infected prey free equilibrium point Es = (0.79,0,0.62, 0.37) for the data
given in (6.1) with ¢;; = 0.2.
Finally, the effect of varying the harvesting rate of infected predator , in the range 0.04 < ¢,;, < 0.188 keeping other parameters
as data given in (6.1) is studied, it is observed that system (2.2) still approach asymptotically to the positive equilibrium point,
however 0.188 < ¢;, < 0.5 causes extinction in the infected prey and the system will approach the infected prey free equilibrium
point.
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Fig 8 Time series of the solution of system (2.2) approaches asymptotically to the infected prey free equilibrium point Es = (0.86,0,0.43, 0.38) for the data

given in (6.1) with ¢;, = 0.2.
CONCLUSIONS AND DISCUSSIONS

In the previous sections, prey-predator model, with SI epidemic disease in both species and harvest in the infected population, is
proposed and analyzed. It is assumed that the disease is transmitted within the individuals through contact , the uniqueness and
boundedness of solution of the system are discussed, the existence of all possible equilibrium points are investigated, it is
observed that system(2.2) has at most seven nonnegative equilibrium points in R . The dynamical behavior of system (2.2) has
been investigated locally as well as globally. Further, it is observed that the vanishing equilibrium point E, always exist, and it is
unstable. The axial equilibrium point E; always exist, and it is locally asymptotically stable point if and only if conditions (4.3)
and (4.4) hold, in addition to that it is globally if the condition (5.1). The predator free equilibrium point E, exist under the
condition (3.1), it is locally asymptotically stable point if and only if conditions (4.7) and (4.8) hold, as well as it is globally if the
conditions (5.2) hold. The disease free equilibrium point E; exist under the conditions (3.2) and (3.2), it is locally asymptotically
stable point if and only if conditions (4.11) and (4.12) hold, as well as it is globally if the conditions (5.3) —(5.5) hold. The
infected predator free equilibrium point E, exist under the conditions (3.10)-(3.12), it is locally asymptotically stable point if and
only if conditions (4.16) and (4.18)-(4.20) hold, as well as it is globally if the conditions (5.6)-(5.9) hold The infected pry free
equilibrium point E;  exist under the conditions (3.18) and (3.19), it is locally asymptotically stable point if and only if conditions
(4.24) and (4.25) hold, as well as it is globally if the conditions (5.10)-(5.13) hold. The positive equilibrium point E, of system
(2.2) exist provided that the conditions (3.31) and (3.34) are hold and the isocline g,(x,y) =0 intersect the x-axis at the
positive value namelyx;. It islocally asymptotically stable point if and only if conditions (4.29)-(4.34) hold, in addition it is
globally if the conditions (5.14)-(5.17) hold.

To understand the effect of varying each parameter including harvest on the global dynamics of system (2.2) and to confirm our
above analytical results, system (2.2) has been solved numerically and the following results are obtained:

1. For the set of hypothetical parameters values given in (6.1), system (2.2) approaches asymptotically to a globally
asymptotically stable point E; = (10.688,0.164,0.174,0.491).

2. Varying the conversion rate parameter value and the half saturation parameter cg , co, ¢;, and c; respectively at each time
keeping other parameters fixed as data given in (6.1) do not have any effect on the dynamical behavior of system
(2.2) and the solution of the system still approaches to positive equilibrium point E, = (x*,y*,z* ,w*).

3. Increasing the infection parameter ¢, > 0.37 and ¢,, > 1.5 at each time keeping other parameters fixed as data given in
(6.1) the solution of the system (2.2) will approaches asymptotically to the vanishing equilibrium point. E, =
(x* ’y* ,Z* ,W*)

4. Further, Increasing the maximum attack rate of susceptible predator for susceptible prey ,harvesting rate and death of
infected predator rare due to disease parameter ¢, > 1.45, 0.215 < c¢;,c;3 = 1.5,and ¢;, = 0.89 respectively at each
time keeping other parameters fixed as data given in (6.1) the solution of the system (2.2) will approaches
asymptotically to the infected prey free equilibrium point E; = (%, 0, Z, W)

5. Varying the conversion rate of the susceptible prey from susceptible predator and infection rate of prey, cg < 0.012 and
¢; < 0.1 keeping other parameters as data given in (6.1) , it is makes the solution of system (2.2) approaches
asymptotically to the axial equilibrium point E; = (1,0,0,0)

6. Increasing the maximum attack rate of susceptible predator for infected prey, the maximum attack rate of infected
predator for infected prey, death of infected prey rare due to disease 0.98 <c, <15,059<c¢; <15 ,0124<¢, <1
respectively at each time keeping other parameters fixed as data given in (6.1) the solution of the system (2.2) will
approaches asymptotically to the infected prey free equilibrium point Ex = (¥,0,Z, W)

7. Finally, Varying the death rate parameter value of predator c,;; = 0.2 the solution of the system (2.2) approaches to the
disease free equilibrium pointE; = (x,0,2,0) , while 0.2 < ¢;; < 0.31 causes extinction in the infected predator and
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the system will approach the infected predator free equilibrium pointt, = (¥, ¥,Z,0). Now, increase 0.31 < c¢,, the
solution of the system (2.2) approaches to the predator free equilibrium point.
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