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A R T I C L E  I N F O                              A B S T R A C T  
 

 

In this paper, a mathematical model consisting of the prey-predator model with different 
infectious diseases that spreads in both population and harvesting in the infected 
population. It is assumed that the disease is not transmitted from prey to predator or 
conversely, in addition to that both diseases spread within same species by contact between 
susceptible and infected individuals. Two types of functional response for describing the 
predation as well as linear incidence for describing transition of diseases are used. The 
existence, uniqueness, boundedness of the solution and the stability analysis of all possible 
equilibrium points are studied. The Lyapunov function is used to study the global dynamics 
of the model. The effect of the disease and harvest on the dynamical of the system is 
discussed by using numerical simulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

INTRODUCTION 
 

A mathematical model is an abstract representation of a real-world phenomenon that uses mathematical language to describe the 
behavior of a natural or physical system. Typically mathematical formula is used to describe the interactions of the various 
components of the system by depending on two important different fields; these are the ecology and epidemiology.  The ecology 
is the branch of biology that deals with the relations and interactions between organisms and their environment, while the 
epidemiology is the branch of medicine that deals with the incidence and prevalence of disease in large populations and with 
detection of the source and cause of epidemics of infectious disease.  These fields are studied extensively in literatures for long 
time as separated fields. Anderson and May [1] were the first whose merged the above two fields and formulated Lotka-Volterra 
predator-prey model with infection disease spread among prey by contact between them and no reproduction in infected prey.   
 

In fact, the study of   effect of infectious disease in ecological system is now becoming an important factor for regulating animal 
and human population size. So in the last years; mathematical models have become extremely important tools in analyzing and 
understanding the spread and control of infectious disease through the study of the different types from disease for example SI, 
SIS and SIR. Where some of infectious disease in the ecology system is transmitted by contact in same of species have proposed 
and studied from some of researchers, Naji and Mustafa [4] studied a prey-predator model with SI infectious disease in prey, 
while Ramana Murthy and Bahlool [26] studied a prey-predator model with SI infectious disease in predator. Moreover, there are 
some of infectious diseases are transmitted in the species not only through contact, but also directly from environment. Majeed 
and Shawka [2] studied prey-predator model with SI and SIS infectious disease in prey population and the disease transmitted 
within the same species by contact and external source. In addition to Khalaf, Majeed and Naji [3] studied prey-predator model 
with SIS infectious disease in prey population this disease passed from a prey to predator through attacking of predator to prey 
and the disease transmitted within the same species by contact and external source. 
 

The harvest rate has a strong influence on the dynamic development of the population, perhaps one of the most important hunting 
the fish or eradication on the disease.  Bhattacharyya and Mukhopadhyay [5] studied prey-predator model with harvest and 
disease, and he assumed that the harvest can eradication the disease, also Bairagi el.at  [6]  studied prey-predator model with 
harvest and disease ,and he assumed that the harvest can remove a parasite  , In general, there are three kinds of harvesting 
function [7, 8, 9] have been studied in the literature 
 

1. Constant harvesting    
 

(ܸ,ݔ)ܭ 	=  ,ܥ	
 

where ݇(ݔ,ܸ) is the harvesting, ܥ	is a acceptable constant  
 

2. Proportionate harvesting 
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(ܸ,ݔ)ܭ 	=  ,ݔܸݍ	
 

where ݍ	is the catchability of the species. 	ܸ is the harvesting effect.  
 

3. Nonlinear harvesting 
 

(ܸ,ݔ)ܭ = ௤௏௫
௕భ௏ା௕మ௫

 , 
 

where ܾଵ,ܾଶ are acceptable positive constants. 
 

Some studies that address the population contain the harvest, Brauer and Soudack [10,11] studied a predator-prey model under 
constant rate of harvesting.  On other hand there are many studies includes disease and proportionate harvesting , Abd ul Satar[12] 
studied a prey-predator model with disease SIS-type and harvesting on the prey and the predator , while Sujatha and Gunasekaran 
[13], Wuhaih[14] and Agnihotri[15] studied a prey-predator model with disease SIS-type, SI-type and harvesting in prey only, in 
addition so many researchers have  predator-prey systems that contain nonlinear harvesting functions [16- 19], while Some of the 
studies  using time delay with harvest  were considered by Aiello and Freedman [20], Rosen [21] ,Freedman and Gopaisammy 
[22], Cushing and Saleem [23].  
      

Recently, Bera et al. [24] had proposed and studied a prey-predator model involving, SI infectious diseases in prey and predator 
species; in addition to the disease is not transmitted from a prey to predator or conversely. It is assumed that both the diseases 
spread within prey and predator population by contact, between susceptible individuals and infected individuals. Furthermore, he 
used linear functional response and linear incidence rate to describe spread both diseases. 
 In this section, an eco-epidemiological mathematical model consisting of prey-predator model involving SI infectious diseases in 
prey and predator species with harvesting in infectious population has been proposed and analyzed. Further, in this model, Holling 
type-II functional response for the predation of susceptible prey and linear functional response for the predation of infected prey   
as well as linear incidence rate for describing the transition of disease are used.  Our aim is to study the effect of harvesting on the 
dynamics of disease propagation and eradication it. 
 

MATHEMATICAL MODEL  
 

In this section, an eco-epidemiological model is proposed for study. The model consists of a prey, whose total population density 
at time ܶ is denoted by ܰ(ܶ), interacting with predator whose total population at time ܶ id denoted by ܲ(ܶ). It is assumed that 
both the prey and the predator populations are infected by different infectious disease. Now, the following assumptions are 
adopted in formulating the basic eco-epidemiology model: 
 

1. There is an ܵܫ	 epidemic disease in both prey and predator population’s divides the prey population into two classes 
namely ܵ(ܶ) that represents the density of susceptible prey at time ܶ and ܫ(ܶ) which represents the density of infected 
prey at timeܶ. Therefore at any time T, we have ܰ(ܶ) = ܵ(ܶ) +  Also divides the predator population in to two .(ܶ)ܫ
classes namely ܺ(ܶ) that represents the density of susceptible predator at time ܶ and ܻ(ܶ) which represents the density 
of infected predator at timeܶ. Therefore at any time T, we have	ܲ(ܶ) = ܺ(ܶ) + ܻ(ܶ).  

2. It is assumed that only susceptible prey S is capable of reproducing in logistic growth with carrying capacity K>0 and 
intrinsic growth rate constant r>0, the infected prey I   is removed before having the possibility of reproducing. However, 
the infected prey population I still contribute with S to population growth toward the carrying capacity. 

3. The disease is transmitted within the same species by contact with an infected individual at infection rates ߚଵ > 0 and 
ଶߚ > 0  for the prey and predator respectively. 

4. The susceptible predator consumes the susceptible and infected prey according to Holling type-II and Lotka-Volterra of 
functional response with maximum attack rate ܽଵ > 0 and  half saturation rate ܾ > 0 for susceptible prey and maximum 
attack rate ܽଶ > 0  for infected prey  respectively, while the infected predator consume the infected prey according to 
Lotka-Volterra of functional response with maximum attack rate ܽଷ > 0 , and contribute a portion of such food with 
conversion rates 	݁௜ > 0;	݅ = 1,2,3.   

5. In the absence of the prey the susceptible and infected predator decay exponentially with natural death rate ݀ଶ > 0 . 
6. The disease may causes mortality with a constant mortality rates 	݀ଵ > 0 and ߙ > 0	  for the infected prey and infected 

predator respectively. 
7. Finally, the infected populations are harvest with constant rates ℎଵ > 0 and ℎଶ > 0 for the prey and predator respectively. 
8. According to the above assumptions, the proposed mathematical model can be represented mathematically by the 

following set of first order non-linear differential equations. 
 

ݏ݀
݀ܶ = ݏݎ ൬1−

ݏ + ܫ
݇

൰ − ܫଵܵߚ −
ܽଵܵܺ
ܾ + ܵ 

ܫ݀
݀ܶ = ܫଵܵߚ − ܽଶܺܫ − ܽଷܻܫ − ݀ଵܫ − ℎଵܫ																																																																																																																																																										(2.1) 
݀ܺ
݀ܶ = ݁ଵ

ܽଵܵܺ
ܾ + ܵ + ݁ଶܽଶܺܫ − ଶܻܺߚ − ݀ଶܺ 

ܻ݀
݀ܶ = ଶܻܺߚ + ݁ଷܽଷܻܫ − (݀ଶ + ܻ(ߙ − ℎଶܻ 
 

With initial conditions 	ܵ(0) (0)ܫ	,0≤ ≥ 0, ܺ(0) ≥ 0 and ܻ(0) ≥ 0. 
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Note that the above proposed model has (16) parameters which makes the mathematical analysis of the system difficult. So in 
order to reduce the number of parameters and determine which parameter represents the control parameter, the following 
dimensionless variables are used: 
 
ݐ = ݔ,	ܶ	ݎ = ௌ

௞
		 ݕ, = ூ

௞
			 , ݖ = ௑

௞
	 ݓ, = ௒

௞
 . 

 
Then system (2.1) can be written in the following dimensionless form: 
 
ݔ݀
ݐ݀ = ݔ ൬1− ݔ − ݕ − ܿଵݕ −

ܿଶݖ
ܿଷ + ݔ

൰ = ଵ݂(ݔ, ,ݕ  (ݓ,ݖ

ݕ݀
ݐ݀ = ݔ൫ܿଵݕ − ܿସݖ − ܿହݓ − (ܿ଺ + ܿ଻)൯ = ଶ݂(ݔ, ,ݕ  (2.2)																																																																																																																														(ݓ,ݖ
ݖ݀
ݐ݀ = ݖ ൬

ݔ଼ܿ
ܿଷ + ݔ + ܿଽݕ − ܿଵ଴ݓ − ܿଵଵ൰ = ଷ݂(ݔ, ,ݕ  (ݓ,ݖ

ݓ݀
ݐ݀ = ݖ൫ܿଵ଴ݓ + ܿଵଶݕ − (ܿଵଵ + ܿଵଷ + ܿଵସ)൯ = ସ݂(ݕ,ݔ,  (ݓ,ݖ
 
Where  
 

ܿଵ =
ଵ݇ߚ
ݎ 	 , ܿଶ =

ܽଵ
ݎ 	 , ܿଷ =

ܾ
݇	 , ܿସ =

ܽଶ݇
ݎ 	 , ܿହ =

ܽଷ݇
ݎ 	 , ܿ଺ =

݀ଵ
ݎ 	 , ܿ଻ =

ℎଵ
ݎ 	 , ଼ܿ =

݁ଵܽଵ
ݎ 	 , ܿଽ =

݁ଶܽଶ݇
ݎ 	, 

ܿଵ଴ = ఉమ௞
௥
	 , ܿଵଵ = ௗమ

௥
	 , ܿଵଶ = ௘య௔య௞

௥
	 , ܿଵଷ = ఈ

௥
, ܿଵସ = ௛మ

௥
		. 

With 	(0)ݔ (0)ݕ, 0≤ ≥ (0)ݖ ,0 ≥ 0 and (0)ݓ ≥ 0. 
 
represent the dimensionless parameter of system (2.2). It is observed that the   number of   parameters have   been   reduced   from 
sixteen   in the system (2.1) to fourteen in the system (2.2).  
 
It is easy to verify that all the interaction functions f1, f2, f3  and  f4 on the right hand side of system (2.2) are continuous and have 
continuous partial derivatives on ܴାସ 	with respect to dependent variables  ݖ , ݕ , ݔ and  ݓ. Accordingly they are Lipschitzian 
functions and hence system (2.2) has a unique solution for each non-negative initial condition. Further the boundedness of the 
system is shown in the following theorem. 
 
Theorem (2.1): All the solutions of system (	2.2	) which initiate in Rା

ସ  are uniformly bounded. 
 
Proof.  
 
Let ((ݐ)ݕ,(ݐ)ݔ, ,(0)ݕ,(0)ݔ)	be any solution of the system (2.2) with non-negative initial condition ((ݐ)ݓ,(ݐ)ݖ  .((0)ݓ,(0)ݖ
According to the first equation of system (2.2) we have:  
ݔ݀
ݐ݀ ≤ −1)ݔ  (ݔ
Clearly according to the theory of differential inequality, we get:  
 
lim௧→ஶsup(ݐ)ݔ ≤ 1 . Define the function  
(ݐ)ܯ = (ݐ)ݔ + (ݐ)ݕ + (ݐ)ݖ  (ݐ)ݓ+
Therefore     
ܯ݀
ݐ݀ < ݔ2 − ݔ −

(ܿଶ − ݖݔ(଼ܿ
ܿଷ + ݔ − (ܿସ − ܿଽ)ݕݖ − (ܿହ − 

ܿଵଶ)ݕݓ − (ܿ଺ + ܿ଻)ݕ − ܿଵଵݖ − (ܿଵଵ + ܿଵଷ + ܿଵସ)ݓ 
 
Now, since the conversion rate constant from prey population to predator population can’t be exceeding the maximum predation 
rate constant of predator population to prey population, hence from the biological point of view, always  ܿଽ < ܿସ, ܿଵଶ<	ܿହ and 
଼ܿ < ܿଶ	, hence it is obtained that: 
 
ܯ݀
ݐ݀ ≤ 2− n		where									ܯ݊ = min 	{	1	, ܿ଺ + ܿ଻	, ܿଵଵ	, ܿଵଵ + ܿଵଷ + ܿଵସ	}	. 
 
Now, by using the comparison theorem [25] on the above differential inequality, we get that: 

(ݐ)ܯ ≤
2
݊ + ൬(0)ܯ−

2
݊
൰	݁ି௡௧ 			.	 

Thus		0 ≤ (ݐ)ܯ ≤ ଶ
௡
 as ݐ → ∞. Hence all the solutions of system (2.2) are uniformly bounded and the proof is complete   
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Existence of equilibrium points 
 

In this section, the existence of all possible equilibrium points of the system (2.2) is discussed.  it is observed that , system (2.2) 
has at most seven equilibrium points. 
 

1. The vanishing equilibrium point	ܧ଴ = (0	,0	,0	,0	)	 always exist. 
2. The axial equilibrium point 	ܧଵ = (1	,0	,0	,0	)  always exist. 
3. The predator-free equilibrium point 	ܧଶ =  ;(	,0	,0	തݕ,	ݔ̅)

 

where  ̅ݔ = ௖లା௖ళ
௖భ

  and   ݕത = ௖భି(௖లା௖ళ)
௖భ(௖భାଵ) ,  

 

exists a unique in the int. ܴାଶ   of xy-plane provided that: 
 

ܿଵ > ܿ଺ + ܿ଻                                                                                                                                                                                    (3.1) 
 

4.The disease-free equilibrium point ࡱ૜ = ,૙,̇࢞)  ;(૙,ࢠ̇
 

where  ̇ݔ = ௖య௖భభ
௖ఴି௖భభ

 and 	̇ݖ = ௖య
௖మ
ቀ1− ௖య௖భభ

௖ఴି௖భభ
ቁ ቀ1 + ௖భభ

௖ఴି௖భభ
ቁ 

 

exists a unique in the int. ܴାଶ   of xz-plane provided that: 
଼ܿ > ܿଵଵ                                                                                                                                                                                          (3.2) 
 

଼ܿ > ܿଵଵ(1 + ܿଷ)                                                                                                                                                                              (3.3) 
 

5.The infected-predator-free equilibrium point ࡱ૝ = ,ന࢟,ന࢞) ା૜ࡾ .ധ,૙) exists and unique in the Intࢠ  of xyz-space if and only if 
there is a positive solution to the following set of equations 
 

1− ݔ − (1 + ܿଵ)ݕ − ௖మ௭
௖యା௫

= 0                                                                                                                                                       (3.4) 
 

ܿଵݔ − ܿସݖ − (ܿ଺ + ܿ଻) = 0                                                                                                                                                             (3.5) 
 
௖ఴ௫
௖యା௫

+ ܿଽݕ − ܿଵଵ = 0                                                                                                                                                                      (3.6) 
 

From equation (3.5)  we have, 
 

ݖ = ଵ
௖ర
൫ܿଵݔ − (ܿ଺ + ܿ଻)൯                                                                                                                                                                (3.7) 

Also, from equation (3.6)  we have, 
 

ݕ = ଵ
௖వ

(ܿଵଵ −
௖ఴ௫
௖యା௫

)                                                                                                                                                                         (3.8) 
 

Now, by substituting equations (3.7) and (3.8) in equation (3.4) we get: 
 

ଶݔଵܯ ݔଶܯ+ ଷܯ+ = 0                                                                                                                                                                  (3.9) 
 

Where  
ଵܯ = −ܿସܿଽ 
 

ଶܯ = ܿଽ(ܿସ(1 − ܿଷ)− ܿଵܿଶ) + ܿସ(1 + ܿଵ)(଼ܿ − ܿଵଵ) 
ଷܯ = ܿଷܿସ൫ܿଽ − ܿଵଵ(1 + ܿଵ)൯ + ܿଶܿଽ(ܿ଺ + ܿ଻) 
 

Note that equation	(3.9) has a unique positive root, namely ̿ݔ  provided that: 
 

ܿଽ > ܿଵଵ(1 + ܿଵ)                                                                                                                                                                           (3.10) 
 

Substituting the value of ̿ݔ   in (3.7) and (3.8) yield that  (ݔ̿)ݖ = (ݔ̿)ݕ and ݖ̿ =  ധ which are positive if the following conditionݕ
hold: 
 

ݔ̿ > ௖లା௖ళ
௖భ

                                                                                                                                                                                       (3.11) 
 

ܿଵଵ > ௖ఴ௫̿
௖యା௫̿

                                                                                                                                                                                     (3.12)  
 

Consequently, the infected predator free equilibrium point	ܧସ = ,	ധݕ,	ݔ̿	) ,ݖ̿ 0	) of system (2.2) exists uniquely in the ݐ݊ܫ.ܴାଷ  of xyz 
−space. 
 

6. The infected-prey-free equilibrium point	ࡱ૞ = ା૜ࡾ .exists and unique in the Int (෥࢝,෤ࢠ,෥,૙࢞)  of xyz-space if and only if there is 
a positive solution to the following set of equations: 
 

1− ݔ − ௖మ௭
௖యା௫

= 0                                                                                                                                                                          (3.13) 
 
௖ఴ௫
௖యା௫

− ܿଵ଴ݓ − ܿଵଵ = 0		                                                                                                                                                               (3.14) 
 

ܿଵ଴ݖ − (ܿଵଵ + ܿଵଷ + ܿଵସ) = 0                                                                                                                                                       (3.15)  
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From equation (3.14)  we have, 
 

ݖ̃ = ௖భభା௖భయା௖భర
௖భబ

                                                                                                                                                                              (3.16) 
 

Now, by substituting equation (3.16) in equation (3.13) we get: 
 

ଶݔଵߛ + ݔଶߛ + ଷߛ = 0,                                                                                                                                                                  (3.17) 
 

Where 
 

ଵߛ = −1 
ଶߛ = 1 − ܿଷ 

ଷߛ = ܿଷ −
ܿଶ(ܿଵଵ + ܿଵଷ + ܿଵସ)

ܿଵ଴
			 

 

Note that equation	(3.17) has a unique positive root, namely		ݔ෤  provided that: 
 

ܿଷ > ௖మ(௖భభା௖భయା௖భర)
௖భబ

                                                                                                                                                                       (3.18) 
 

Substituting the value of ݔ෤   in (3.14) yield that ݓ(ݔ෤) = ෦	ݓ = ௫෤(௖ఴି௖భభ)ି௖య௖భభ
௖భబ(௖యା௫෤)

 
 

which is positive if in addition of condition (3.2)		the following conditions hold: 
 

෤ݔ > ௖య௖భభ
௖ఴି௖భభ

                                                                                                                                                                                     (3.19) 
 

7. The positive (coexistence) equilibrium point 	ࡱ૟ = ,	∗࢟,	∗࢞	)  exists if and only if there is a positive solution to the 	(	∗࢝,	∗ࢠ
following set of equations 
 

1− ݔ − (1 + ܿଵ)ݕ − ௖మ௭
௖యା௫

= 0                                                                                                                                                     (3.20) 
 

ܿଵݔ − ܿସݖ − ܿହݓ − (ܿ଺ + ܿ଻) = 0                                                                                                                                               (3.21) 
 
௖ఴ௫
௖యା௫

+ ܿଽݕ − ܿଵ଴ݓ−ܿଵଵ = 0          																																																																																																																																																																		(3.22)   
 

ܿଵ଴ݖ + ܿଵଶݕ − (ܿଵଵ + ܿଵଷ + ܿଵସ) = 0                                                                                                                                           (3.23)                                                      
 

From equation (3.23)  we have, 
 

ݖ = ଵ
௖భబ
൫(ܿଵଵ + ܿଵଷ + ܿଵସ)− ܿଵଶݕ൯                                                                                                                                            	(3.24) 

Also, from equation (3.22)  we have, 
 

 
ݓ = ଵ

௖భబ
( ௖ఴ௫
௖యା௫

+ ܿଽݕ−ܿଵଵ)                                                                                                                                                           (3.25	) 
 

Then by substituting equation (3.24) and (3.25) in (3.20) and (3.21) yield the following two isoclines: 
 

݃ଵ(ݔ, (ݕ = 1− ݔ − (1 + ܿଵ)ݕ −
೎మ
೎భబ

൫(௖భభା௖భయା௖భర)ି௖భమ௬൯

௖యା௫
= 0                                                                                                       (3.26) 

 

݃ଶ(ݔ, (ݕ = ܿଵݔ −
௖ర
௖భబ
൫(ܿଵଵ + ܿଵଷ + ܿଵସ)− ܿଵଶݕ൯ −

௖ఱ
௖భబ
ቀ ௖ఴ௫
௖యା௫

+ ܿଽݕ−ܿଵଵቁ − (ܿ଺ + ܿ଻) = 0                                                 ….(3.27) 
 

Now from equation (3.26) we notice that, when ݕ → 0, then			ݔ →  ଵ represents a positive root of the following secondݔ ଵ, whereݔ
order polynomial equation: 
 

ଵܰ	ݔଶ + 	 ଶܰ	ݔ + 	 ଷܰ = 	0			,                                                                                                                                                          (3.28) 
 
Where 
 

ଵܰ = ܿଵ଴ 
ଶܰ = ܿଷ − 1	 
ଷܰ = ܿଶ(ܿଵଵ + ܿଵଷ + ܿଵସ)− ܿଷܿଵ଴ 

 

Straightforward computation shows that equation	(3.28)  has a unique positive root namely  ݔଵ if the condition (3.18) is hold. 
Further, from equation (3.27) we notice that, when ݕ → 0, then 	ݔ →  ଶ represents a positive root of the followingݔ ଶ, whereݔ
second order polynomial equation: 
     

ଶݔଵߚ + ݔଶߚ + ଷߚ = 0,                                                                                                                                                                 (3.29) 
 

where    
ଵߚ = ܿଵܿଵ଴ 
ଶߚ = −ܿସ(ܿଵଵ + ܿଵଷ + ܿଵସ) + ܿଵܿଷܿଵ଴ − ܿହ(଼ܿ − ܿଵଵ) − ܿଵ଴(ܿ଺ + ܿ଻) 
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ଷߚ = −ܿଷ[ܿସ(ܿଵଷ + ܿଵସ) + ܿଵ଴(ܿ଺ + ܿ଻) + ܿଵଵ(ܿସ − ܿହ)]	 
 

Straightforward computation shows that equation	(3.29)  has a unique positive root namely  ݔଶ if the condition is hold. 
 

ܿସ > ܿହ                                                                                                                                                                                          (3.30) 
 

Now, from equation (3.26) we have:  
 
ௗ௫
ௗ௬

= −ቀడ௚భ
డ௬
ቁ / 	ቀడ௚భ

డ௫
ቁ	.	So,	ௗ௫

ௗ௬
> 0  if one set of the following sets of conditions hold:  

 
 

ቀడ௚భ
డ௬
ቁ > 0, ቀడ௚భ

డ௫
ቁ < 	0		ܱܴ		 ቀడ௚భ

డ௬
ቁ < 0, ቀడ௚భ

డ௫
ቁ > 0								                                                                                                                (3.31) 

 

Further, from (3.27) we notice that 
  
 

 ௗ௫
ௗ௬

= −ቀడ௚మ
డ௬
ቁ / 	ቀడ௚మ

డ௫
ቁ	.	So,	ௗ௫

ௗ௬
< 0 if one set of the following sets of conditions hold: 

 

ቀడ௚మ
డ௬
ቁ > 0, ቀడ௚మ

డ௫
ቁ > 0			ܱܴ		 ቀడ௚మ

డ௬
ቁ < 0, ቀడ௚మ

డ௫
ቁ < 0			                                                                                                                    (3.32) 

 
 

Then the two isoclines (3.26) and (3.27) intersect at a unique positive point (	ݔ∗, y∗	) , if  in addition the condition 		ݔଶ >                                                                                                ଵݔ
(3.33) 
 

Now,  by  substituting the value of ݔ∗ and  y∗ in (3.24) and (3.25) yield that ݖ(	y∗) = z∗  and )ݓ	ݔ∗, y∗	) =  which are  ∗ݓ
positive if and only if the following conditions hold: 
 
 
௖భభ
௖వ

< ∗ݕ < ௖భభା௖భయା௖భర
௖భమ

                                                                                                                                                                  (3.34) 
 

Accordingly, the positive equilibrium point ܧ଺ exists unique in Int ܴାସ , if addition to condition (3.31 -3.34) the isocline 	݃ଵ(ݕ,ݔ) =
0 intersect the x-axis at the positive value  namely ݔଵ∗ 
 

Local Stability Analysis 
 

In this section, we analyzed the local stability of the model (2.2) around each equilibrium point and discussed through computing 
the Jacobian matrix 	ݔ)ܬ	, ,ݕ  and determined the eigenvalues of system (2.2)  at each of them the Jacobian			(ݓ,		ݖ
matrix		ݕ,ݔ)ܬ, ,	ݖ w) of the system (2.2) at each of them can be written: 
 

ܬ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
߲ ଵ݂

ݔ߲
߲ ଵ݂

ݕ߲
߲ ଵ݂

ݖ߲
߲ ଵ݂

߲w
߲ ଶ݂

ݔ߲
߲ ଶ݂

ݕ߲
߲ ଶ݂

ݕ߲
߲ ଶ݂

߲w
߲ ଷ݂

ݔ߲
߲ ଷ݂

ݕ߲
߲ ଷ݂

ݖ߲
߲ ଷ݂

߲w
߲ ସ݂

ݔ߲
߲ ସ݂

ݕ߲
߲ ସ݂

ݖ߲
߲ ସ݂

߲w⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

						.																																																																																																																																																																			(4.1) 

 

Where  ௜݂ ; 1,2,3,4 are given in system (2.2) and 
߲ ଵ݂

ݔ߲ = 1− ݔ2 − (1 + cଵ)	y−
ܿଷܿଶݖ

(ܿଷ + ଶ(ݔ 		 ,
߲ ଵ݂

߲y = −(1 + ܿଵ)ݔ			,
߲ ଵ݂

ݖ߲ = −
ܿଶݔ
ܿଷ + 	ݔ ,

߲ ଵ݂

ݓ߲ = 0	, 

 
߲ ଶ݂

ݔ߲ = ܿଵݕ					,
߲ ଶ݂

ݕ߲ = ܿଵݔ − ܿସݖ − ܿହݓ − (ܿ଺ + ܿ଻)	,
߲ ଶ݂

ݖ߲ = −ܿସݕ			,
߲ ଶ݂

ݓ߲ = −ܿହݕ	,	 

 
߲ ଷ݂

ݔ߲ =
଼ܿܿଷݖ

(ܿଷ + ଶ(ݔ 				 ,
߲ ଷ݂

ݕ߲ = ܿଽݖ		,
߲ ଷ݂

ݖ߲ =
ݔ଼ܿ
ܿଷ + ݔ + ܿଽݕ − ܿଵ଴ݓ − ܿଵଵ	,

߲ ଷ݂

ݓ߲ = −ܿଵ଴	ݖ	, 

 
߲ ସ݂

ݔ߲ = 0			,
߲ ସ݂

ݕ߲ = ܿଵଶݓ			,
߲ ସ݂

ݖ߲ = ܿଵ଴ݓ	,			
߲ ସ݂

ݓ߲ = ܿଵ଴ݖ + ܿଵଶݕ − (ܿଵଵ + ܿଵଷ + ܿଵସ)	. 
 

Stability of equilibrium point ࡱ૙ = (૙,૙,૙,૙) 
 

The Jacobian matrix of system (2.2) at  ܧ଴	 can be written as, 
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଴ܬ = (଴ܧ)ܬ =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 0

0 −(ܿ଺ + ܿ଻) 0 0

0 0 −ܿଵଵ 0

0 0 0 −(ܿଵଵ + ܿଵଷ + ܿଵସ)⎦
⎥
⎥
⎥
⎥
⎤

																																																																																																																					(4.1) 

 

Then the characteristic equation of  ܬ(ܧ଴) is given by: 
 

(1 − ଺ܿ	)	(ߣ + c଻ + ଵଵܿ	)(	ߣ + ଵଵܿ))(	ߣ + ܿଵଷ + ܿଵସ) + (ߣ 	= 0, 
So, the eigenvalues of		ܬ଴  are ߣ଴ଵ = 1	, ଴ଶߣ = −(ܿ଺ + c଻),ߣ଴ଷ = −ܿଵଵ and  
଴ସߣ = (ܿଵଵ + ܿଵଷ + ܿଵସ) 
 

Thus, the equilibrium point  ܧ଴ is unstable. 
 

Stability of equilibrium point ࡱ૚ = (૚,૙,૙,૙) 
 

The Jacobian matrix of system (2.2) at  ܧଵ	 can be written as, 

ଵܬ = (ଵܧ)ܬ =

⎣
⎢
⎢
⎢
⎢
⎡−1 −(1 + ܿଵ) −

ܿଶ
ܿଷ + 1 0

0 ܿଵ − (ܿ଺ + ܿ଻) 0 0

0 0
଼ܿ

ܿଷ + 1 − ܿଵଵ 0

0 0 0 −(ܿଵଵ + ܿଵଷ + ܿଵସ)⎦
⎥
⎥
⎥
⎥
⎤

																																																																																											(	4.2) 

 

Then the characteristic equation of  ܬ(ܧଵ) is given by: 
 

(1 + ଺ܿ	)	(ߣ + c଻ − cଵ + (	ߣ ൬	ܿଵଵ −
c଼

cଷ + 1 + ൰	ߣ ((ܿଵଵ + ܿଵଷ + ܿଵସ) + (ߣ 	= 0 
 

So, the eigenvalues of		ܬଵ  areߣଵଵ = ଵଶߣ,	1− = ܿଵ − (ܿ଺ + c଻),ߣଵଷ = ௖ఴ
௖యାଵ

− ܿଵଵ and 
 

ଵସߣ  = (ܿଵଵ + ܿଵଷ + ܿଵସ). 
 

Thus, the equilibrium point	ܧଵ is locally asymptotically stable in the. ܴାସ , provided that: 
 

ܿ଺ + ܿ଻ > ܿଵ	                                                                                                                                                                                   (4.3) 
 

ܿଵଵ > ௖ఴ
௖యାଵ

                                                                                                                                                                                       (4.4) 
 

However, it is a saddle point otherwise. 
 

Stability of equilibrium point ࡱ૛ =  (ഥ,૙,૙࢟,ഥ࢞)
 

The  Jacobian matrix of system (2.2) at  ܧଶ	 can be written as, 
 

ଶܬ = (ଶܧ)ܬ = ൣ݇௜௝൧ସ×ସ
                                                                                                                                                                     (4.5) 

 

Where 
 

݇ଵଵ = −
ܿ଺ + ܿ଻
ܿଵ

		 , ݇ଵଶ = −
(1 + ܿଵ)(ܿ଺ + ܿ଻)

ܿଵ
		 ,݇ଵଷ = −

ܿଶ(ܿ଺ + ܿ଻)
ܿଵܿଷ + ܿ଺ + ܿ଻

,݇ଵସ = 0	, 

݇ଶଵ =
ܿଵ − (ܿ଺ + ܿ଻)

1 + ܿଵ
		 , ݇ଶଶ = 0,݇ଶଷ = −

ܿସ
ܿଵ
ቆ
ܿଵ − (ܿ଺ + ܿ଻)

1 + ܿଵ
ቇ	 ,݇ଶସ = −

ܿହ
ܿଵ
ቆ
ܿଵ − (ܿ଺ + ܿ଻)

1 + ܿଵ
ቇ	, 

݇ଷଵ = 0,݇ଷଶ = 0, ݇ଷଷ =
଼ܿ(ܿ଺ + ܿ଻)
ܿଵܿଷ + ܿ଺ + ܿ଻

+
ܿଽ
ܿଵ
ቆ
ܿଵ − (ܿ଺ + ܿ଻)

1 + ܿଵ
ቇ − ܿଵଵ,݇ଷସ = 0,݇ସଵ = 0, ݇ସଶ = 0,	 

݇ସଷ = 0,݇ସସ = ௖భమ
௖భ
ቀ௖భି(௖లା௖ళ)

ଵା௖భ
ቁ − (ܿଵଵ + ܿଵଷ + ܿଵସ). 

 

Then the characteristic equation of  ܬ(ܧଶ) is given by: 
 

ଶߣ	] + ߣ	ଵܤ + ݇ଷଷ	(	]	ଶܤ − ସସ݇	)(	ߣ − (	ߣ 	= 0, 
where: 
ଵܤ = −݇ଵଵ > 0 
ଶܤ = −݇ଵଶ݇ଶଵ > 0		 
 
So, either 
 
(	݇ଷଷ − ସସ݇	)(	ߣ − (	ߣ 	= 0,																																																																							                                                                                            		(4.6) 
 
which gives two of the eigenvalues of  ܬ(ܧଶ)	by: 
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ଶଷߣ = ݇ଷଷ < 0	, provided that  
 

ܿଵଵ > ௖ఴ(௖లା௖ళ)
௖భ௖యା௖లା௖ళ

+ ௖వ
௖భ
ቀ௖భି(௖లା௖ళ)

ଵା௖భ
ቁ ,                                                                                                                                                 (4.7) 

 

and ߣଶସ = ݇ସସ < 0	, provided that   
 
௖భమ
௖భ
ቀ௖భି(௖లା௖ళ)

ଵା௖భ
ቁ < (ܿଵଵ + ܿଵଷ + ܿଵସ)                                                                                                                                               (4.8) 

 

Or 
ଶߣ + ߣ	ଵܤ + ଶܤ 	= 0																																																																														 
 

which gives that other two eigenvalues of  ܬଶ with negative real parts which are  
 

ଶଵߣ =
1
2
ቆ−ܤଵ +ටܤଵଶ −  ቇ		ଶܤ4

ଶଶߣ =
1
2
ቆ−ܤଵ −ටܤଵଶ −  ቇ		ଶܤ4

 

So, equilibrium point  ܧଶ is locally asymptotically stable in the .ܴାସ  . However, it is unstable otherwise. 
 

Stability of equilibrium point  ࡱ૜ = ,૙,̇࢞)  (૙,ࢠ̇
 

The Jacobian matrix of system (2.2) at  ܧଷ	 can be written as, 
 

ଷܬ = (ଷܧ)ܬ = ௜௝൧ସ×ସݖൣ
 ,                                                                                                                                                                   (4.9) 

 

Where 
 

ଵଵݖ = ݔ̇ ൬−1 +
ܿଶ̇ݖ

(ܿଷ + ଶ൰(ݔ̇ , ଵଶݖ = −(1 + ܿଵ)̇ݔ, ଵଷݖ	 = −
ܿଶ̇ݔ
ܿଷ + ݔ̇ 	 , ଵସݖ = 0, ଶଵݖ = 0, 

 

ଶଶݖ	 = ܿଵ̇ݔ − ܿସ̇ݖ − (ܿ଺ + ܿ଻)	, ଶଷݖ = 0	, ଶସݖ = 0	, ଷଵݖ =
଼ܿܿଷ̇ݖ

(ܿଷ + ଶ(ݔ̇ , ଷଶݖ = ܿଽ̇ݖ	, ଷଷݖ = 0,	 
 

ଷସݖ	 = −ܿଵ଴̇ݖ	, ସଵݖ	 = 0, ସଶݖ	 = 0	, ସଷݖ = 0	, ସସݖ = ܿଵ଴̇ݖ − (ܿଵଵ + ܿଵଷ + ܿଵସ). 
 

Then the characteristic equation of  ܬ(ܧଷ) is given by: 
 

ଶߣ	] + ଵܸ	ߣ + ଶܸ	]	(	݇ଶଶ − ସସ݇	)(	ߣ − (	ߣ 	= 0, 
 

where: 
 

ଵܸ = ଵଵݖ− > 0 
ଶܸ = ଷଵݖଵଷݖ− > 0		 

 

So, either 
 

ଶଶݖ	) − ସସݖ	)(	ߣ − (	ߣ 	= 0						,						                                                                                                                                               	(4.10) 
 

which gives two of the eigenvalues of  ܬ(ܧଷ)	by: 
 

ଷଶߣ = ଶଶݖ < 0	, provided that  
 

ܿଵ̇ݔ < ܿସ̇ݖ+ (ܿ଺ + ܿ଻),                                                                                                                                                              			(4.11) 
 

And		ߣଷସ = ସସݖ < 0	, provided that   
 

ܿଵ଴̇ݖ < (ܿଵଵ + ܿଵଷ + ܿଵସ)                                                                                                                                                              (4.12) 
Or 
ଶߣ + ଵܸ	ߣ + ଶܸ 	= 0																																																																														 
 

which gives that other two eigenvalues of  ܬଷ with negative real parts which are,  
 

ଷଵߣ =
1
2
ቆ− ଵܸ +ට ଵܸ

ଶ − 4 ଶܸ		ቇ 

ଷଷߣ =
1
2
ቆ− ଵܸ −ට ଵܸ

ଶ − 4 ଶܸ		ቇ 
 

The equilibrium point  ܧଷ is locally asymptotically stable in the .ܴାସ  . However, it is unstable otherwise. 
 

Stability of equilibrium point  ࡱ૝ =   (ധ,૙ࢠ,ന࢟,ന࢞)
 

The Jacobian matrix of system (2.2) at  ܧସ	 can be written as, 
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ସܬ = (ସܧ)ܬ = ൣ݀௜௝൧ସ×ସ
 ,                                                                                                                                                                (4.13) 

 

Where 

݀ଵଵ = ݔ̿− +
ܿଶ̿ݖ̿ݔ

(ܿଷ + 		ଶ(ݔ̿ ,݀ଵଶ = −(1 + ܿଵ)̿ݔ,݀ଵଷ = −
ܿଶ̿ݔ
ܿଷ + ݔ̿ , ݀ଵସ = 0, 	݀ଶଵ = ܿଵݕധ,݀ଶଶ = 0, 

	݀ଶଷ = −ܿସݕധ	,݀ଶସ = −ܿହݕധ	,݀ଷଵ =
	ܿଷ଼ܿ̿ݖ

(ܿଷ + ଶ(ݔ̿ 	 , 	݀ଷଶ = ܿଽ̿ݖ	,݀ଷଷ = 0	, ݀ଷସ = −ܿଵ଴̿ݖ	,݀ସଵ = 	0, 

	݀ସଶ = 0, ݀ସଷ = 0, 		݀ସସ = ܿଵ଴̿ݖ + ܿଵଶݕധ − (ܿଵଵ + ܿଵଷ + ܿଵସ)	 
 

Then the characteristic equation of  ܬ(ܧସ) is given by: 
 

ଷߣ	] + Uଵ	ߣଶ + ଶܷߣ + ଷܷ	]	(݀ସସ − (	ߣ 	= 0,                                                                                                                                (4.14) 
 

Where  
 

ଵܷ = −݀ଵଵ 
ଶܷ = −(݀ଵଶ݀ଶଵ + ݀ଵଷ݀ଷଵ + ݀ଶଷ݀ଷଶ) 

ଷܷ = −(݀ଵଷ݀ଶଵ݀ଷଶ + ݀ଶଷ݀ଵଶ݀ଷଵ) + ݀ଶଷ݀ଵଵ݀ଷଶ 
 

 So, either 
 

(݀ସସ − (	ߣ = 0	, which gives                                                                                                                                                        (4.15) 
 

ସସߣ = ݀ସସ < 0	, provided that  
 

ܿଵ଴̿ݖ + ܿଵଶݕധ < (ܿଵଵ + ܿଵଷ + ܿଵସ)	                                                                                                                                                 (4.16) 
 

Or  
ଷߣ	] + Uଵ	ߣଶ + ଶܷߣ + ଷܷ	],                                                                                                                                                           (4.17) 
 

Using Routh Hurwitz criterion equation (4.17) has roots (eigenvalues)with negative real parts  if and only if  ଵܷ > 0, ଷܷ > 0	 and  
	 ଵܷ ଶܷ − ଷܷ > 0. 
 

Now 	 ଵܷ > 0	, provided that 
 

1 > ௖మ௭̿
(௖యା௫̿)మ	

                                                                                                                                                                                   (4.18) 
 

Also, due to condition (4.18) we obtain that ଷܷ > 0	provided that: 
 

 ܿଵܿଶܿଽ > ܿସ(1 + ܿଵ) 	௖య௖ఴ
௖యା௫̿

                                                                                                                                                             (4.19)  
 

Further, it is easy to check that: 
 

ଵܷ ଶܷ − ଷܷ = ݀ଵଵ݀ଵଶ݀ଶଵ + ݀ଶଷ݀ଵଶ݀ଷଵ + ݀ଵଷ(݀ଶଵ݀ଷଶ + ݀ଵଵ݀ଷଵ) 
 

Clearly, the second terms is positive while the third term is positive under the   condition 
 

݀ଶଵ݀ଷଶ < −݀ଵଵ݀ଷଵ		                                                                                                                                                                     (4.20) 
 

 Hence			 ଵܷ ଶܷ − ଷܷ > 0. 
So, all the eigenvalues of  ܬ(ܧସ) have negative real part under the given conditions and hence ܧସ is locally asymptotically stable. 
However, it is unstable otherwise. 
 

Stability of equilibrium point  ࡱ૞ =  (෥࢝,෤ࢠ,෥,૙࢞)
 

The Jacobian matrix of system (2.2) at  ܧହ	 can be written as, 
 

(ହܧ)ܬ = ௜௝൧ସ×ସݎൣ
,                                                                                                                                                                           (4.21) 

where 

ଵଵݎ = ෤ݔ− +
ܿଶݔ෤̃ݖ

(ܿଷ + 		෤)ଶݔ , ଵଶݎ = −(1 + ܿଵ)ݔ෤, ଵଷݎ = −
ܿଶݔ෤
ܿଷ + ෤ݔ , ଵସݎ	 = 0, ଶଵݎ = 0,	 

ଶଶݎ = ܿଵݔ෤ − ܿସ̃ݖ − ܿହݓ෥ − (ܿ଺ + ܿ଻), ଶଷݎ = 0	, ଶସݎ = 0	, ଷଵݎ = 	௖య௖ఴ௭෤
(௖యା௫෤)మ

ଷଶݎ ,	 = ܿଽ̃ݖ		, ଷଷݎ = 0	, 
ଷସݎ	 = −ܿଵ଴̃ݖ	, ସଵݎ	 = 	0, ସଶݎ = ܿଵଶݓ෥ , ସଷݎ = ܿଵ଴ݓ෥ , ସସݎ = ܿଵ଴̃ݖ + ܿଵଶݕ෤ − (ܿଵଵ + ܿଵଷ + ܿଵସ)	. 
 

Then the characteristic equation of  ܬ(ܧହ) is given by: 
 

ଷߣ	] + Qଵ	ߣଶ + ܳଶߣ + ܳଷ	]	(ݎଶଶ − (	ߣ 	= 0,                                                                                                                                 (4.22) 
 

where 
Qଵ =   ଵଵݎ−
ܳଶ = ଷଵݎଵଷݎ)− +  (ସଷݎଷସݎ	
ܳଷ =  ସଷݎଷସݎଵଵݎ	
So, either  
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ଶଶݎ) − (	ߣ = 0                                                                                                                                                                               (4.23) 
ଶଶߣ  = 	ଶଶݎ < 0  
provided that : 
 

ܿଵݔ෤ < ܿସ̃ݖ+ ܿହݓ෥ + (ܿ଺ + ܿ଻)                                                                                                                                                      (4.24) 
 

Or  
 

ଷߣ	] + Qଵ	ߣଶ + ܳଶߣ + ܳଷ	]   ,                                                                                                                                                         (4.25) 
 

Using Routh Hurwitz criterion equation (4.25) has roots (eigenvalues) with negative real parts  if and only if  ܳଵ > 0, ܳଷ > 0	 and  
ܳଵܳଶ − ܳଷ > 0. 
 

Now,  ܳଵ > 0	 , ܳଷ > 0 and  ܳଵܳଶ − ܳଷ = ଵଵݎଷଵݎଵଷݎ > 0 , provided that 
 

1 > ௖మ௭෤
(௖యା௫෤)మ	

                                                                                                                                                                                   (4.26) 
 

So, all the eigenvalues of  ܬ(ܧହ) have negative real part under the given conditions and hence ܧହ is locally asymptotically stable. 
However, it is unstable otherwise. 
 

Stability of Equilibrium point	ࡱ૟ =  (	∗࢝,	∗ࢠ,	∗࢟,	∗࢞	)
 

The Jacobian matrix of system (2.2) at  ܧହ	 can be written as, 
 

(଺ܧ)ܬ = ൣ݈௜௝൧ସ×ସ
 ,                                                                                                                                                                          (4.27) 

 

where  
 

݈ଵଵ = ∗ݔ− +
ܿଶݔ∗z∗

(ܿଷ + 	ଶ(∗ݔ 	 , ݈ଵଶ = −(1 + ܿଵ)ݔ∗, ݈ଵଷ = −
ܿଶݔ∗

ܿଷ + ∗ݔ , 	݈ଵସ = 0, ݈ଶଵ = ܿଵݕ∗, ݈ଶଶ = 0, 
 

݈ଶଷ = −ܿସݕ∗	, ݈ଶସ = −ܿହݕ∗, ݈ଷଵ =
	ܿଷ଼ܿz∗

(ܿଷ + ଶ(∗ݔ 	 , ݈ଷଶ = ܿଽz∗		, ݈ଷଷ = 0	, 	݈ଷସ = −ܿଵ଴z∗	, 	݈ସଵ = 	0, 
 

݈ସଶ = ܿଵଶw∗, ݈ସଷ = ܿଵ଴w∗, ݈ସସ = 0	. 
 

Then the characteristic equation of  ܬ(ܧ଺) is given by: 
 

ସߣ + ଵܰ	ߣଷ + Nଶ	ߣଶ + Nଷߣ+ ସܰ 	= 0 ,                                                                                                                                        (4.28) 
 

where 
ଵܰ = −݈ଵଵ 
ଶܰ = ଵߩ + ଶߩ + ଷߩ + ସߩ +            ହߩ
ଷܰ = ଺ߩ) − ݈ଵଵߩଵ) + ଻ߩ + ଵ଴ߩ − ݈ଵଵ(ߩଶ +        (ଷߩ
ସܰ = (−݈ଵଵߩ଺ + (ସߩଵߩ + ଷߩହߩ) − −(ଽߩ ଼ߩ) + ݈ଵଵߩଵ଴)             

 

With  
 

ଵߩ = −݈ଷସ݈ସଷ , 	ߩଶ = −݈ଷଶ݈ଶଷ  , ߩଷ = −݈ଶସ݈ସଶ ,	ߩସ = −݈ଵଶ݈ଶଵ , ߩହ = −݈ଷଵ݈ଵଷ,  
	଺ߩ = −݈ଶଷ݈ଷସ݈ସଶ	 , ߩ଻ = −݈ଵଶ݈ଶଷ݈ଷଵ − ݈ଵଷ݈ଶଵ݈ଷଶ, ଼ߩ = ݈ଵଶ݈ଶସ݈ଷଵ݈ସଷ,ߩଽ = ݈ଵଷ݈ଶଵ݈ଷସ݈ସଶ , 
ଵ଴ߩ  = −݈ଶସ݈ଷଶ݈ସଷ	. 
 

Now by using Routh Hurwitz criterion all the eigenvalues, which represent the roots of eq. (4.28), have negative real parts if and 
only if  ଵܰ > 0, ଷܰ > 0,	 ସܰ > 0 and  ∆= ( ଵܰ ଶܰ − ଷܰ) ଷܰ− ଵܰ

ଶ	 ସܰ > 0	 . Clearly  ଵܰ > 0 , provided that  
 

1 > ௖మ୸∗

(௖యା௫∗)మ	
    .                                                                                                                                                                             (4.29) 

 

Hence		 ଷܰ > 0, provided that: 
 

ଵܰܿଵ଴ > ܿସܿଵଶݕ∗  , and                                                                                                                                                                 (4.30) 
 

ܿଵܿଶܿଽ(ݔ∗ + ܿଷ) > (1 + ܿଵ)ܿଷܿସ଼ܿ ,                                                                                                                                             (4.31) 
 

 while ସܰ > 0 provided that : 
 
௖ర௖భమேభ
(ଵା௖భ)௫∗

< 	 ܿଵܿଵ଴ < ௖య௖ఱ௖ఴ
(௖యା௫∗)మ   , and                                                                                                                                              (4.32)		 

 

ܿଽ ଵܰ > (1 + ܿଵ)ܿଷ଼ܿ(4.33)                                                                                                                                                                ∗ݔ 
 

Straight for word computation shows that: 
 

∆= ݈ଵଵଶ ଶߩ)ସߩ + (ଷߩ + ݈ଵଵଶ ଵߩ)ହߩ + −(ଶߩ ଺ߩ ଷܰ + ݈ଵଵଶ ଽߩ + ݈ଵଵଶ (݈ଵଵߩଵ଴ + (଼ߩ + ݈ଵଵߩ଺൫݈ଵଵଶ − ସߩ) + ହ)൯ߩ
+ ଻ߩ) + )(ଵ଴ߩ ଵܰ(ߩସ + −(ହߩ ଷܰ) 
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Clearly, the first five terms are positive under conditions  (4.29)− (4.31) while in addition to conditions (4.29)− (4.31)	the last 
second terms are positive provided that:  
 
ேయ
ேభ

< ସߩ) + (ହߩ < ଵܰ
ଶ  .                                                                                                                                                                (4.34) 

 

Hence ∆= ( ଵܰ ଶܰ − ଷܰ) ଷܰ − ଵܰ
ଶ	 ସܰ > 0. 

 

So, all the eigenvalues of   ܬ(ܧ଺) have negative real part under the given conditions and hence ܧ଺ is locally asymptotically stable. 
However, it is unstable otherwise. 
 

Global stability analysis 
 

In this section the global stability analysis for the equilibrium points, which are locally asymptotically stable of system  (2.2)   is 
studied analytically by use the suitable of Lyapunov method as shown in the following theorems. 
 

Theorem (5.1) 
 

Assume that the disease and predator free equilibrium point  ܧଵ = (1	,0	,0	,0	) of system (	2.2	) is locally asymptotically stable in 
the ܴାସ .Then  ܧଵ is globally asymptotically stable provided that the following condition hold: 
 

ଵߚ >  ଶ                                                                                                                                                                                           (5.1)ߚ
 

where	ߚଵ = ݔ)] − 1) + ଵ
ଶ
ଶ[	ݕ ହܿ)ݕݓ+ − ܿଵଶ) + ܿଵଵݖ	 and   ߚଶ = ௖మ௭

௖యା௫
+ ଵ

ସ
 .	ଶݕ

 

Proof: Consider the following function  
 

,ݔ)ଵܩ ,ݕ (ݓ,ݖ = ݔ	) − 1− 	݈݊ (	ݔ + ݕ + ݖ  ݓ+
It is easy to see thatܩଵ(ݕ,ݔ, ଵ(ܴାସܥ	߳(ݓ,ݖ ,ܴ), and ܩଵ(ܧଵ) = 0	, and ܩଵ(ݕ,ݔ, (ݓ,ݖ > 0	; 
,ݕ,ݔ)∀ (ݓ,ݖ ≠ ଵܩ ଵ . Now by differentiatingܧ  with respect to time ݐ and going some algebraic handling, given that: 
 

ଵܩ݀
ݐ݀ = ݔ)]− − 1) +

1
ଶ	[ݕ2 + ൫ܿଵݕ	 − (ܿ଺ + ܿ଻)൯ + ଽܿ)ݕݖ − ܿସ) + 

ଵଶܿ)ݕݓ − ܿହ) − (ܿଵଵݖ + (ܿଵଵ + ܿଵଷ + ܿଵସ)ݓ) +
ܿଶݖ
ܿଷ + ݔ +

1
ݕ4

ଶ 
 

Now, due to the facts  ܿସ > ܿଽ,		ܿହ > ܿଵଶ	  that are mentioned in theorem (2.1) and  condition (4.3) we obtain that: 
 

ଵܩ݀
ݐ݀ < ݔ)]− − 1) +

1
[	ݕ2

ଶ − ହܿ)ݕݓ − ܿଵଶ)− ܿଵଵݖ +
ܿଶݖ
ܿଷ + ݔ +

1
ݕ4

ଶ = ଵߚ− +  ଶߚ
 

Thus,  ௗீభ
ௗ௧

 is negative definite and hence ܩଵ  is Lyapunov function under the condition	(5.1). So ܧଵ is a globally asymptotically 
stable and then the proof is complete  

Theorem (5.2)  
 

Assume that the predator free equilibrium point  ܧଶ = ,	ݔ̅)  ) is locally asymptotically stable in the	2.2	) of system (	,0	,0	തݕ
ܴାସ .Then  ܧଶ is globally asymptotically stable provided that the following conditions hold: 
 
ଵߚ̅ >  ଶ                                                                                                                                                                                           (5.2)ߚ̅
 
where					̅ߚଵ = ݔ)] − (ݔ̅ + ଵ

ଶ
ݕ) − ത)]ଶݕ + (଼ܿ − ܿଶ) ௫௭

௖యା௫
ଵଶܿ)ݕݓ+ − ܿହ) + ଽܿ)ݕݖ − ܿସ) − ܿଵଵݖ തݕଵଶܿ−)ݓ+ + (ܿଵଵ + ܿଵଷ +

ܿଵସ)				and    ̅ߚଶ = ௖మ௫̅௭
௖యା௫

+ ܿସݕതݖ+ ܿହݕݓത + ଵ
ସ

ݕ) −  .ത)ଶݕ
 
Proof: Consider the following function  
 
,ݔ)ଶܩ ,ݕ (ݓ,ݖ = ቀ	ݔ − ݔ̅ − ݈݊	ݔ̅

ݔ
	ݔ̅
ቁ + ݕ) − തݕ − ത݈݊ݕ

ݕ
(തݕ + ݖ  ݓ+

It is easy to see that ܩଶ(ݔ, ,ݕ ଵ(ܴାସܥ	߳(ݓ,ݖ ,ܴ), and ܩଶ(ܧଶ) = 0	, and ܩଶ(ݕ,ݔ, (ݓ,ݖ > 0	; 
,ݕ,ݔ)∀ (ݓ,ݖ ≠ ଶܩ ଶ . Now by differentiatingܧ  with respect to time ݐ and going some algebraic handling, given that: 
 
ଶܩ݀
ݐ݀ = ݔ)− − ଶ(ݔ̅ − ݔ) − ݕ)(ݔ̅ − −(തݕ ݔ) − (ݔ̅

ܿଶ̅ݖݔ
ܿଷ + ݔ − ܿହݕ)ݓ − −(തݕ ܿସݕ)ݖ − (തݕ +

ݖݔ଼ܿ
ܿଷ + ݔ + ܿଽݖݕ − ܿଵଵݖ + ܿଵଶݕݓ

− (ܿଵଵ + ܿଵଷ + ܿଵସ)ݓ ±
1
4

ݕ) −  ത)ଶݕ
ଶܩ݀
ݐ݀ < ݔ)]− − (ݔ̅ +

1
2

ݕ) − ത)]ଶݕ + (଼ܿ − ܿଶ)
ݖݔ

ܿଷ + ݔ +
ܿଶ̅ݖݔ
ܿଷ + ݔ + ଵଶܿ)ݕݓ − ܿହ) + ଽܿ)ݕݖ − ܿସ)− ܿଵଵݖ+ തݕଵଶܿ)ݓ

− (ܿଵଵ + ܿଵଷ + ܿଵସ)) + ܿସݕതݖ+ ܿହݕݓത +
1
4

ݕ) − ത)ଶݕ = ଵߚ̅− +  ଶߚ̅
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Thus,  ௗீమ
ௗ௧

 is negative definite and hence ܩଶ  is Lyapunov function under the conditions mentioned in theorem 
(2.1), (5.2)ܽ݊݀	(4.8). So  ܧଶ is a globally asymptotically stable and then the proof is complete  
 

Theorem (5.3)  
 

Assume that the disease free equilibrium point  ܧଷ = ,	0,	ݔ̇) ) is locally asymptotically stable in the ܴାସ	2.2	of system ( (	0,	ݖ̇ .Then  
 :ଷ is globally asymptotically stable provided that the following conditions holdܧ
 

ଵ̇ߚ >  ଶ                                                                                                                                                                                           (5.3)ߚ̇
 

ቈ
ቀ௖మ௫̇ା

೎భశభ	
೎భ

௖ఴ௖యି௖మ௖యቁ

௖య(௖యା௫̇)
቉
ଶ

< 4	(1 − ௖మ௭̇
௖య(௖యା௫̇))   ,                                                                                                                                   (5.4) 

 
௖మ௭̇

௖య(௖యା௫̇) < 1                                                                                                                                                                                     (5.5) 
 

where		ߚଵ̇ = ൤ටቀ1− ௖మ௭̇
௖య(௖యା௫̇)

ቁ ݔ) − (ݔ̇ + ݖ) − ൨(ݖ̇
ଶ

− ଵା௖భ
௖భ

ଽܿ)ݕݖ] − ܿସ) ଵଶܿ)ݕݓ+ − ܿହ)− (ܿ଺ + ܿ଻)ݕ]− ଵା௖భ
௖భ

ݖܿଵ଴̇	൫ݓ	 −

(ܿଵଵ + ܿଵଷ + ܿଵସ)൯		 and 	̇ߚଶ = (1 + ܿଵ)̇ݕݔ + ݖ) −  ଶ(ݖ̇
 

Proof: Consider the following function  
 

,ݔ)ଷܩ ,ݕ (ݓ,ݖ = ቀ	ݔ − ݔ̇ − ݈݊	ݔ̇
ݔ
	ݔ̇
ቁ + ܽ̇ଵݕ + ܽ̇ଶ(ݖ − ݖ̇ − ݈݊ݖ̇

ݖ
(	ݖ̇ + ܽ̇ଷݓ 

 

where ܽ̇௜ , ݅=1,2,3 are positive constant to be bent on. It is easy to see that  ܩଷ(ݔ, ,ݕ ଵ(ܴାସܥ	߳(ݓ,ݖ ,ܴ) , and ܩଷ(ܧଷ) = 0	, and 
,ݔ)ଷܩ ,ݕ (ݓ,ݖ > ,ݔ)∀;	0 ,ݕ (ݓ,ݖ ≠ ଷܩ ଷ . Now by differentiatingܧ  with respect to time ݐ and going some algebraic handling, given 
that: 
 

ଷܩ݀
ݐ݀ = −൬1−

ܿଶ̇ݖ
(ܿଷ + ଷܿ)(ݔ + ൰(ݔ̇ ݔ) − ଶ(ݔ̇ + ݔ) − ଵܿଵ̇ܽ)ݕ(ݔ̇ − (1 + ܿଵ)	) 	+ ܽ̇ଵܿଵ̇ݕݔ − ܽ̇ଵ(ܿ଺ + ܿ଻)ݕ + ଶܿଽ̇ܽ)ݕݖ − ܽ̇ଵܿସ)

+ ଷܿଵଶ̇ܽ)ݕݓ − ܽ̇ଵܿହ) +
(ܿଶ̇ݔ + ܽ̇ଶ଼ܿܿଷ − ܿଶܿଷ)

(ܿଷ + ଷܿ)(ݔ + (ݔ̇ ݔ) − ݖ)(ݔ̇ − (ݖ̇ − ܽ̇ଶܿଽݖ̇ݕ + 	ܿଵ଴ݖݓ(ܽ̇ଷ − ܽ̇ଶ) + ܽ̇ଷ	ܿଵ଴ݖ̇ݓ

− ܽ̇ଷ(ܿଵଵ + ܿଵଷ + ܿଵସ)ݓ 
 

So by choosing the constants  
 

ܽ̇ଵ = ܽ̇ଶ = ܽ̇ଷ = ଵା௖భ
௖భ

,  we get: 
 

ଷܩ݀
ݐ݀ = −൬1−

ܿଶ̇ݖ
(ܿଷ + ଷܿ)(ݔ + ൰(ݔ̇ ݔ) − ଶ(ݔ̇ + (1 + ܿଵ)̇ݕݔ −

1 + ܿଵ
ܿଵ

(ܿ଺ + ܿ଻)ݕ +
ቀܿଶ̇ݔ + 1 + ܿଵ

ܿଵ
଼ܿܿଷ − ܿଶܿଷቁ

(ܿଷ + ଷܿ)(ݔ + (ݔ̇ ݔ) − ݖ)(ݔ̇ − (ݖ̇

+
1 + ܿଵ
ܿଵ

ଽܿ)ݕݖ − ܿସ) +
1 + ܿଵ
ܿଵ

ଵଶܿ)ݕݓ − ܿହ)−
1 + ܿଵ
ܿଵ

ܿଽݖ̇ݕ +
1 + ܿଵ
ܿଵ

൫	ܿଵ଴̇ݖ − (ܿଵଵ + ܿଵଷ + ܿଵସ)൯ݓ ± ݖ) −  ଶ(ݖ̇

ௗீయ
ௗ௧

< 	− ൤ටቀ1− ௖మ௭̇
௖య(௖యା௫̇)

ቁ ݔ) − (ݔ̇ + ݖ) − ൨(ݖ̇
ଶ

+ ଵା௖భ
௖భ

ଽܿ)ݕݖ] − ܿସ) ଵଶܿ)ݕݓ+ − ܿହ)− (ܿ଺ + ܿ଻)ݕ] + 	ଵା௖భ
௖భ

ݖܿଵ଴̇	൫ݓ −

(ܿଵଵ + ܿଵଷ + ܿଵସ)൯ + (1 + ܿଵ)̇ݕݔ + ݖ) − ଵ̇ߚ−	=ଶ(ݖ̇ +  ଶߚ̇
 

Thus,  ௗீయ
ௗ௧

 is negative definite and hence ܩଷ  is Lyapunov function under the conditions mentioned in theorem (2.1), (5.3)−
(5.5)ܽ݊݀	(4.12). So  ܧଷ is a globally asymptotically stable and then the proof is complete     
 

Theorem (5.4)  
 

Assume that the infected predator free equilibrium point  ܧସ = ,ധݕ,ݔ̿) ,ݖ̿ 0) of system (	2.2	) is locally asymptotically stable in the  
ܴାସ .Then  ܧସ is globally asymptotically stable provided that the following conditions hold: 
 

ݕ > 	 ଵߚ̿ ,   ധݕ >  ଶ    ,                                                                                                                                                                      (5.6)ߚ̿
 

௖మ௭̿
௖య(௖యା௫̿) < 1			                                                                                                                                                                                  (5.7) 
 

2 ቀ1− ௖మ௭̿
௖య(௖యା௫̿)

ቁ > 1, 							2 ቀ ௖మ௭̿
௖య(௖యା௫̿)

ቁ > ቀି௖మ௖యା௖మ௫̿ା௖ఴ௖య
(௖య(௖యା௫̿))

ቁ
ଶ
		 ,                                                                                                       (5.8) 

 

(ܿଽ − ܿସ)ଶ < 4	                                                                                                                                                                               (5.9) 
 

where   ̿ߚଵ = ൤ටଵ
ଶ
ቀ1− ௖మ௭̿

௖య(௖యା௫̿)
ቁ ݔ) − (ݔ̿ + ݕ) − ധ)൨ݕ

ଶ

+ ൤ටଵ
ଶ
ቀ1− ௖మ௭̿

௖య(௖యା௫̿)
ቁ ݔ) − −(ݔ̿ ݖ) − ൨(ݖ̿

ଶ

− ൫	ܿଵ଴̿ݖ + ܿଵଶݕധ − (ܿଵଵ + ܿଵଷ +

ܿଵସ)൯	ݓ + ݕ)ݓ − ധ)(ܿହݕ − ܿଵଶ) 
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ଶߚ̿ = ݕ)] − (ധݕ + ݖ) −  .ଶ[(ݖ̿
 

Proof: Consider the following function  
 

,ݔ)ସܩ ,ݕ (ݓ,ݖ = ቀ	ݔ − ݔ̿ − ݈݊	ݔ̿
ݔ
	ݔ̿
ቁ+ ധܽଵ ൬ݕ − ധݕ − ധ݈݊ݕ

ݕ
	ധݕ
൰+ 

                         	 ധܽଶ(ݖ − ݖ̿ − ݈݊ݖ̿ ௭
௭̿
	) + ധܽଷݓ 

 

Where ധܽ௜ , ݅=1,2,3 are positive constant to be bent on. It is easy to see that  ܩସ(ݔ, ,ݕ ଵ(ܴାସܥ	߳(ݓ,ݖ ,ܴ) , and ܩସ(ܧସ) = 0	, and 
,ݔ)ସܩ ,ݕ (ݓ,ݖ > ,ݔ)∀;	0 ,ݕ (ݓ,ݖ ≠  and going some algebraic handling, given ݐ ସ with respect to timeܩ ସ . Now by differentiatingܧ
that: 
 

ସܩ݀
ݐ݀ = −ቆ1−

ܿଶ̿ݖ
(ܿଷ + ଷܿ)(ݔ + ቇ(ݔ̿ ݔ) − ଶ(ݔ̿ + ݔ) − ݕ)(ݔ̿ − )(ധݕ ധܽଵܿଵ − (1 + ܿଵ)	) + 

(ܿଶ̿ݔ + ധܽଶ଼ܿܿଷ − ܿଶܿଷ)
(ܿଷ + ଷܿ)(ݔ + (ݔ̿ ݔ) − ݖ)(ݔ̿ − (ݖ̿ + ݖ) − ݕ)(ݖ̿ − )(ധݕ ധܽଶܿଽ − ധܽଵܿସ) + 

ݕ)ݓ − )(ധݕ ധܽଷܿଵଶ − ധܽଵܿହ) + 	ܿଵ଴ݖݓ( ധܽଶ − ധܽଷ) + ധܽଶ	ܿଵ଴ݖ̿ݓ + ധܽଷܿଵଶݕݓധ 
−ധܽଷ(ܿଵଵ + ܿଵଷ + ܿଵସ)ݓ ± ݕ) − ധ)ଶݕ ± ݖ) −  ଶ(ݖ̿
 

So by choosing the constants  
 

ധܽଵ = ധܽଶ = ധܽଷ = 1 ,   
ௗீర
ௗ௧

< −൤ටଵ
ଶ
ቀ1− ௖మ௭̿

௖య(௖యା௫̿)
ቁ ݔ) − (ݔ̿ + ݕ) − ധ)൨ݕ

ଶ

− ൤ටଵ
ଶ
ቀ1− ௖మ௭̿

௖య(௖యା௫̿)
ቁ ݔ) − −(ݔ̿ ݖ) − ൨(ݖ̿

ଶ

+ ൫	ܿଵ଴̿ݖ + ܿଵଶݕധ − (ܿଵଵ + ܿଵଷ +

ܿଵସ)൯	ݓ + ݕ)] − (ധݕ + ݖ) − ଶ[(ݖ̿ + ݕ)ݓ − ധ)(ܿଵଶݕ − ܿହ) = -̿ߚଵ +  ଶߚ̿
 

Thus,  ௗீర
ௗ௧

 is negative definite and hence ܩସ is Lyapunov function under the conditions mentioned in theorem (2.1), (5.6)−
(5.9)ܽ݊݀	(4.16). So  ܧସ is a globally asymptotically stable and then the proof is complete   
            

Theorem (5.5)   
 

Assume that the infected prey free equilibrium point ܧହ = ,෤ݔ) 0,  ) is locally asymptotically stable in the	2.2	෥)  of system (ݓ,ݖ̃
ܴାସ .Then  ܧହ is globally asymptotically stable provided that the following conditions hold: 
 

ݓ > ෥ݓ ෨ଵߚ				, >  ෨ଶ  ,                                                                                                                                                                      (5.10)ߚ
 

ቀܿଶݔ෤ + ௖ర
௖వ

ଵା௖భ
௖భ

଼ܿܿଷ − ܿଶܿଷቁ
ଶ

> 4	 ቀ1− ௖మ௭෤
௖య(௖యା௫෤)

ቁ  ,                                                                                                                     (5.11) 
 

௖మ௭෤
௖య(௖యା௫෤)

< 1,                                                                                                                                                                                 (5.12) 
 

ܿହܿଽ > ܿସܿଵଶ .                                                                                                                                                                                   (5.13) 
      

where 

෨ଵߚ = ቎ඨ൬1−
ܿଶ̃ݖ

ܿଷ(ܿଷ + (෤ݔ
൰ ݔ) − (෤ݔ + ݖ) − ቏(ݖ̃

ଶ

−
1 + ܿଵ
ܿଵ

ݓ)ݕ − ෥)(ܿସܿଵଶݓ − ܿଽܿହ)− 

1 + ܿଵ
ܿଵ

෤ݔ൫ܿଵݕ − ܿସ̃ݖ − ܿହݓ෥ − (ܿ଺ + ܿ଻)൯ 
 

෨ଶߚ = ݖ) −  ଶ(ݖ̃
 

Proof: Consider the following function  
 

,ݔ)ହܩ ,ݕ (ݓ,ݖ = ቀ	ݔ − ෤ݔ − ݈݊	෤ݔ ௫
௫෤
	ቁ+ ෤ܽଵݕ + ෤ܽଶ(ݖ − ݖ̃ − ݈݊ݖ̃ ௭

௭෤
	)+		 ෤ܽଷ(ݓ ෥ݓ− − ෥݈݊௪ݓ

௪෥
	) 

 

Where ෤ܽ௜ , ݅=1,2,3 are positive constant to be bent on. It is easy to see that ,ܩହ(ݕ,ݔ, ଵ(ܴାସܥ	߳(ݓ,ݖ ,ܴ) , and ܩହ(ܧହ) = 0	, and 
,ݔ)ହܩ ,ݕ (ݓ,ݖ > ,ݔ)∀;	0 ,ݕ (ݓ,ݖ ≠  and going some algebraic handling, given ݐ ହ with respect to timeܩ ହ .Now, by differentiatingܧ
that: 
 

ହܩ݀
ݐ݀ = −൬1−

ܿଶ̃ݖ
(ܿଷ + ଷܿ)(ݔ + (෤ݔ

൰ ݔ) − ෤)ଶݔ + ݔ) − )ݕ(෤ݔ ෤ܽଵܿଵ − (1 + ܿଵ)	)+	෥ܽଵݕ൫ܿଵݔ෤ − ܿସ̃ݖ − ܿହݓ෥ − (ܿ଺ + ܿ଻)൯

+
(ܿଶݔ෤ + ෤ܽଶ଼ܿܿଷ − ܿଶܿଷ)

(ܿଷ + ଷܿ)(ݔ + (෤ݔ
ݔ) − ݖ)(෤ݔ − (ݖ̃ + ݖ) − )ݕ(ݖ̃ ෤ܽଶܿଽ − 	෥ܽଵܿସ) + ݓ)ݕ )(෥ݓ− ෤ܽଷܿଵଶ − 	෥ܽଵܿହ) 	

+ 	ܿଵ଴(ݓ ݖ)(෥ݓ− − )(ݖ̃ ෤ܽଷ − ෤ܽଶ) 
 

So by choosing the constants  
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෤ܽଵ = ଵା௖భ
௖భ

	 , ෤ܽଶ = ෤ܽଷ = ௖ర
௖వ

ଵା௖భ
௖భ

,  we get ; 
ହܩ݀
ݐ݀ < −൬1−

ܿଶ̃ݖ
ܿଷ(ܿଷ + (෤ݔ

൰ ݔ) − ෤)ଶݔ +
1 + ܿଵ
ܿଵ

෤ݔ൫ܿଵݕ − ܿସ̃ݖ − ܿହݓ෥ − (ܿ଺ + ܿ଻)൯ +
ݔ) − ݖ)(෤ݔ − (ݖ̃
ܿଷ(ܿଷ + (෤ݔ

൬ܿଶݔ෤ +
ܿସ
ܿଽ

1 + ܿଵ
ܿଵ

଼ܿܿଷ − ܿଶܿଷ൰

+
1 + ܿଵ
ܿଵ

ݓ)ݕ − ෥)(ܿସܿଵଶݓ − ܿଽܿହ) ± ݖ) −  ଶ(ݖ̃
 

ହܩ݀
ݐ݀ < − ቎ඨ൬1−

ܿଶ̃ݖ
ܿଷ(ܿଷ + (෤ݔ

൰ ݔ) − (෤ݔ + ݖ) − ቏(ݖ̃

ଶ

+
1 + ܿଵ
ܿଵ

ݓ)ݕ − ෥)(ܿସܿଵଶݓ − ܿଽܿହ) 

 

ݖ)+ − ଶ(ݖ̃ +
1 + ܿଵ
ܿଵ

෤ݔ൫ܿଵݕ − ܿସ̃ݖ − ܿହݓ෥ − (ܿ଺ + ܿ଻)൯ = ෨ଵߚ− +  ෨ଶߚ

Thus,  ௗீఱ
ௗ௧

 is negative definite and hence ܩହ is Lyapunov function under the conditions		(5.10)− (5.13)ܽ݊݀	(4.24). So  ܧହ is a 
globally asymptotically stable and then the proof is complete  
 

Theorem (5.6)  
 

 Assume that the positive equilibrium point ܧ଺ = ,	∗ݔ	) y∗	, z∗	,ݓ∗	)	of system (	2.2	) is locally asymptotically stable. Then  ܧ଺ is 
globally asymptotically stable in the ܴାସ 	.	provided that the following conditions hold: 
 

௖మ௭∗

௖య(௖యା௫∗) < 1    ,                                                                                                                                                                            (5.14) 
 

ቈ
ቀ௖మ௫∗ା

೎ర
೎వ
	భశ೎భ೎భ

௖ఴ௖యି௖మ௖యቁ

௖య(௖యା௫∗)
቉
ଶ

< 4 ቀ1− ௖మ௭∗

௖య(௖యା௫∗)
ቁ ,                                                                                                                             (5.15) 

 

	ܿଵ଴
ଵା௖భ
௖భ

ቀ ௖ఱ
௖భమ

− ௖ర
௖వ
ቁ < 2 ,                                                                                                                                                               (5.16) 

 

∗ଵߚ >  ଶ∗ .                                                                                                                                                                                       (5.17)ߚ
 
 

Where  

∗ଵߚ = ቎ඨ൬1−
ܿଶݖ∗

ܿଷ(ܿଷ + (∗ݔ
൰	(ݔ − (∗ݔ − ݖ) − ቏(∗ݖ

ଶ

+ ݓ)  ଶ(∗ݓ−

 

∗ଶߚ = ݖ)] − (∗ݖ + ݓ) −  ଶ[(∗ݓ
 

Proof: Consider the following function  
 

,ݔ)଺ܩ ,ݕ (ݓ,ݖ = ቀ	ݔ − ∗ݔ − ݈݊	∗ݔ
ݔ
	∗ݔ
ቁ+ ܽଵ∗ ൬ݕ − ∗ݕ − ݈݊	∗ݕ

ݔ
∗ݕ
൰+ 

 

ܽଶ∗(ݖ − ∗ݖ − ∗ݖ 	݈݊
ݖ
(∗ݖ + ܽଷ∗(ݓ − ∗ݓ − ݈݊∗ݓ

ݓ
 (	∗ݓ

 

where ܽ௜∗ , ݅=1,2,3 are positive constant to be bent on. It is easy to see that  ,ܩ଺(ݕ,ݔ, ଵ(ܴାସܥ	߳(ݓ,ݖ ,ܴ) , and ܩ଺(ܧ଺) = 0	, and 
,ݔ)଺ܩ ,ݕ (ݓ,ݖ > ,ݔ)∀;	0 ,ݕ (ݓ,ݖ ≠ ଺ܩ ଺ . Now by differentiatingܧ  with respect to time ݐ and going some algebraic handling, given 
that: 
 

଺ܩ݀
ݐ݀ = −൬1−

ܿଶݖ∗

(ܿଷ + ଷܿ)(ݔ + (∗ݔ
൰ ݔ) − ଶ(∗ݔ + 	ܿଵ଴(ݓ ݖ)(∗ݓ− − ∗ଷܽ)(∗ݖ − ܽଶ∗) + 

ݔ) − ݕ)(∗ݔ − ଵ∗ܿଵܽ)(∗ݕ − (1 + ܿଵ)	) + ݕ) − ݖ)(∗ݕ − ଶ∗ܿଽܽ)(∗ݖ − ܽଵ∗ܿସ) + 
(ܿଶݔ∗ + ܽଶ∗଼ܿܿଷ − ܿଶܿଷ)

(ܿଷ + ଷܿ)(ݔ + (∗ݔ
ݔ) − ݖ)(∗ݔ − (∗ݖ + ݕ) − ݓ)(∗ݕ − ଷ∗ܿଵଶܽ)(∗ݓ − ܽଵ∗ܿହ) 

 

So by choosing the constants  
 

ܽଵ∗ = ଵା௖భ
௖భ

	 , ܽଶ∗ = ௖ర
௖వ

ଵା௖భ
௖భ

	 , ܽଷ∗ = ௖ఱ
௖భమ

ଵା௖భ
௖భ

, we get: 
଺ܩ݀
ݐ݀ = −൬1−

ܿଶݖ∗

(ܿଷ + ଷܿ)(ݔ + (∗ݔ
൰ ݔ) − ଶ(∗ݔ + 	ܿଵ଴

1 + ܿଵ
ܿଵ

ݓ) ݖ)(∗ݓ− − (∗ݖ ൬
ܿହ
ܿଵଶ

−
ܿସ
ܿଽ
൰

+
ቀܿଶݔ∗ + ܿସ

ܿଽ
1 + ܿଵ
ܿଵ

଼ܿܿଷ − ܿଶܿଷቁ

(ܿଷ + ଷܿ)(ݔ + (∗ݔ
ݔ) − ݖ)(∗ݔ − (∗ݖ ± ݖ) − ଶ(∗ݖ ± ݓ) −  ଶ(∗ݓ
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଺ܩ݀
ݐ݀ < − ቎ඨ൬1−

ܿଶݖ∗

ܿଷ(ܿଷ + (∗ݔ
൰	(ݔ − (∗ݔ − ݖ) − ቏(∗ݖ

ଶ

− ݓ) ଶ(∗ݓ− + ݖ)] − (∗ݖ + ݓ) ଶ[(∗ݓ− = ∗ଵߚ− +  	∗ଶߚ

Thus,  ௗீల
ௗ௧

 is negative definite and hence ܩ଺  is Lyapunov function under the conditions		(5.14)− (5.17). So  ܧ଺ is a globally 
asymptotically stable and then the proof is complete                                                                                             
 

Numerical simulation 
 

In this section, we confirmed our obtained results in the previous sections numerically by using Runge Kutta method along with 
predictor corrector method. Note that, we use turbo C++ in programming and matlab in plotting and then discuss our obtained 
results. The system (2.2) is studied numerically for different sets of parameters and different sets of initial points. The objectives 
of this study are: first investigate the effect of varying the value of each parameter on the dynamical behavior of system (2.2) and 
second confirm our obtained analytical results. It is observed that, for the following set of hypothetical parameters: 
 

ܿଵ = 0.5	, ܿଶ = 0.4	, ܿଷ = 0.4	, ܿସ = 0.5	, ܿହ = 0.3	, ܿ଺ = 0.01	, ܿ଻ = 0.1
	଼ܿ = 0.3	, ܿଽ = 0.4	, ܿଵ଴ = 0.5, ܿଵଵ = 0.01	, ܿଵଶ = 0.2, ܿଵଷ = 0.01, ܿଵସ = 0.1		ൠ                                                                           (6.1)    

.   

 

 
Fig 1 Time series of the solution of system (2.2) that started from five different initial points	(0.6	,0.8	, 0.7	, 1.1)		,					(0.8	, 1	, 0.9, 1.3),							(1,1.2,1.1,1.5), and 
(1.2,1.4,1.3,1.7)	for the data given in (6.1). (ܽ) Time series of the trajectories of susceptible prey ݔ	, (ܾ) Time series of the trajectories of infected prey  ݕ, (c) 

Time series of the trajectories of susceptible predator  ݖ, (d) Time series of the trajectories of infected  predator  ݓ. 
 

Clearly, figure (6.1) shows that system (2.2) approaches asymptotically to the positive equilibrium point ܧ଺ = (0.688, 0.164, 
0.174, 0.491) starting from five different initial points and this is confirming our obtained analytical results. 
 

Now, in order to discuss the effect of the parameters values of system (2.2) on the dynamical behavior of the system, the system is 
solved numerically for the data given in (6.1)  with varying one parameter at each time and sometime two parameters the obtained 
results are given below. 
 

The effect of varying the infection rate of prey in the range 0 < ܿଵ < 0.37 keeping other parameters as data given in (6.1)  , 
causes extinction in the infected prey and the system will approach to the infected prey free equilibrium point as shown in the 
following figure. However for  0.37 < ܿଵ < 1.5 , it is observed that system (2.2) still approach asymptotically to the positive 
equilibrium point.  
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Fig 2 Time series of the solution of system (2.2) approaches asymptotically to the infected prey free equilibrium point 	ܧହ = (0.92,0, 0.24,0.39) for the data given 
in (6.1) with ଵܿ = 0.3. 

 
 
The effect of varying the predation rate on susceptible prey in the range			0.3 < ܿଶ < 1.45  keeping other parameters as data given 
in (6.1) is studied, it is observed that system (2.2) still approach asymptotically to the positive equilibrium point, while increasing 
this parameter further 1.45 < ܿଶ causes extinction in the infected prey and the system will approach the infected prey free 
equilibrium point. On other hand varying the half saturation rate in the range  0 < ܿଷ < 1.5 keeping other parameters as data 
given in (6.1) is studied, it is observed that system (2.2) still approach asymptotically to the positive equilibrium point. Moreover, 
varying the predation rate on infected prey in the range 0.4 < ܿସ < 0.97 keeping other parameters as data given in (6.1) is studied; 
it is observed that system (2.2) still approach asymptotically to the positive equilibrium point, while increasing this parameter 
further 0.98 < ܿସ < 1.5 cause’s extinction in the infected prey and the system will approach to the infected prey free equilibrium 
point. 
 
The effect of varying the predation rate on infected prey in the range  0.2 < ܿହ < 0.58	 keeping other parameters as data given in 
(6.1); it is observed that system (2.2) still approach asymptotically to the positive equilibrium point, however for 0.59 < ܿହ < 1.5  
cause’s extinction in the infected prey and the system will approach the infected prey free equilibrium point. 
 
The effect of varying the death rate of the infected prey due to disease, in the range 	0 < 	 ܿ଺ < 0.124 keeping other parameters as 
data given in (6.1) is studied, it is observed that system (2.2) still approach asymptotically to the positive equilibrium point, 
however increasing this parameter further 0.124 < ܿ଺ < 1  causes extinction in the infected prey and the system will approach the 
infected prey free equilibrium point. 
 
The effect of varying the harvesting rate of infected prey, in the range 0 < 	 ܿ଻ < 0.214 keeping other parameters as data given in 
(6.1) is studied, it is observed that system (2.2)  still approach asymptotically to the positive equilibrium point, however increasing 
this parameter further 0.215 < ܿ଻ < 1  causes extinction in the infected prey and the system will approach the infected prey free 
equilibrium point. 

 
Fig 3 Time series of the solution of system (2.2) approaches asymptotically to the infected prey free equilibrium point 	ܧହ = (0.92,0, 0.24,0.39) for the data given 

in (6.1) with ܿ଻ = 0.3. 

0 1 2 3 4 5 6

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

Time

P
op

ul
at

io
n

 

 
Susceptible prey x 
Infected prey y
Susceptible predator z
Infected predator w

0 1 2 3 4 5 6

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

Time

P
op

ul
at

io
n

 

 
Susceptible prey x
Infected prey y
Susceptible predator z
Infected predater w



International Journal of Current Advanced Research Vol 6, Issue 02, pp 2222-2241, February 2017 
 

 

2238 

Now by varying the conversion rate of the susceptible prey from susceptible predator, in the range 0 < ଼ܿ < 0.4 keeping other 
parameters as data given in (6.1) is studied; it is observed that system (2.2)  still approach asymptotically to the positive 
equilibrium point, however ଼ܿ < 0.012 and ܿଵ < 0.1 keeping other parameters as data given in (6.1) is studied; it is observed that 
the solution of system (2.2) approaches asymptotically to the axial equilibrium point as shown in the following figure. 

 
Fig 4 Time series of the solution of system (2.2) approaches asymptotically to the axial equilibrium point 	ܧଵ = (1,0, 0,0) for the data given in (2.1)  with ଵܿ =

0.09  and ଼ܿ = 0.01. 
 
The effect of varying the conversion rate of the infected prey from susceptible predator, in the range 0 < ܿଽ < 0.5 keeping other 
parameters as data given in (6.1) is studied; it is observed that system (2.2) still approach asymptotically to the positive 
equilibrium point. 
 

The effect of varying the infection rate of predator in the range	0.1 < ܿଵ଴ < 0.35, causes extinction in the infected prey and the 
system will approach the infected prey free equilibrium point as shown in the following figure. However 0.35 < ܿଵ଴ < 0.95 
keeping other parameters as data given in (6.1) is studied, it is observed that system (2.2) still approach asymptotically to the 
positive equilibrium point. 

 
Fig 5 Time series of the solution of system (2.2) approaches asymptotically to the infected prey free equilibrium point 	ܧହ = (0.84,0, 0.48,0.77) for the data given 

in (6.1) with ଵܿ଴ = 0.25. 
 

Similarly, for the data given by Eq(6.1), the effect of varying the death rate of the predator, in the range  0 < 	ܿଵଵ < 0.168  
keeping other parameters as data given in	(6.1) is studied; it is observed that system (2.2) still approach asymptotically to the 
positive equilibrium point, while for		0.168 ≤ ܿଵଵ < 0.2 causes extinction in the infected prey  and the system will approach the  
infected prey  free equilibrium point, further for 	ܿଵଵ = 0.2 the solution of the system (2.2) approaches to the disease free 
equilibrium point as show in the Fig(6.6a) ;additional for 0.2 < ܿଵଵ ≤ 0.31  causes extinction in the infected predator  and the 
system will approach the  infected predator free equilibrium point as show in the Fig(6.6b), finally 0.31 < ܿଵଵ ≤ 1  the solution of 
the system (2.2) approaches to the predator free equilibrium point as show in the Fig(6.6c). 
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Fig 6 Time series of the solution of system (2.2) for the data given in (6.1) with different value of ଵܿଵ  :  (a) globally asymptotically stable of the disease free 

equilibrium point 	ܧଷ = (0.8	, 0	,0.6	,0) for ଵܿଵ = 0.2 , (b) globally asymptotically stable of the  infected predator free equilibrium point  
ସܧ = (0.719	,0.067,0.499,0) for ଵܿଵ = 0.25 , (c) globally asymptotically stable predator free equilibrium point 	ܧଶ = (0.22	, 0.52,0	,0)  for 	 ଵܿଵ = 0.6. 

 

The effect of varying the conversion rate of the infected prey from predator, in the range 0 < ܿଵଶ ≤ 0.3	keeping other parameters 
as data given in	(6.1) is studied; it is observed that system (2.2)	still approach asymptotically to the positive equilibrium point. On 
the other hand varying the effect of the death rate of the infected predator due to disease, in the range  0 < 	ܿଵଷ < 0.09  keeping 
other parameters as data given in	(6.1) is studied; it is observed that system (2.2) still approach asymptotically to the positive 
equilibrium point, however for 0.1 ≤ ܿଵଷ ≤ 0.41 causes extinction in the infected prey and the system will approach the infected 
prey free equilibrium point as shown in the following figure. 

 
Fig 7 Time series of the solution of system (2.2) approaches asymptotically to the infected prey free equilibrium point 	ܧହ = (0.79, 0,0.62	, 0.37) for the data 

given in (6.1) with ଵܿଷ = 0.2. 
 

Finally, the effect of varying the harvesting rate of infected predator , in the range 0.04 < 	ܿଵସ < 0.188 keeping other parameters 
as data given in	(6.1) is studied, it is observed that system (2.2)	still approach asymptotically to the positive equilibrium point, 
however 0.188 ≤ ܿଵସ ≤ 0.5	causes extinction in the infected prey and the system will approach the infected prey free equilibrium 
point. 
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Fig 8 Time series of the solution of system (2.2) approaches asymptotically to the infected prey free equilibrium point 	ܧହ = (0.86, 0,0.43	, 0.38) for the data 

given in (6.1) with ଵܿସ = 0.2. 

CONCLUSIONS AND DISCUSSIONS 
 

In the previous sections, prey-predator model, with SI epidemic disease in both species and harvest in the infected population, is 
proposed and analyzed. It is assumed that the disease is transmitted within the individuals through contact , the uniqueness and 
boundedness of solution of the system are discussed, the existence of all possible equilibrium points are investigated, it is 
observed that system(2.2) has at most seven nonnegative equilibrium points in ܴାସ  . The dynamical behavior of system (2.2) has 
been investigated locally as well as globally. Further, it is observed that the vanishing equilibrium point ܧ଴ always exist, and it is 
unstable. The axial equilibrium point ܧଵ  always exist, and it is locally asymptotically stable point if and only if conditions (4.3) 
and (4.4) hold, in addition to that it is globally if the condition (5.1). The predator free equilibrium point ܧଶ   exist under the 
condition (3.1), it is locally asymptotically stable point if and only if conditions (4.7) and (4.8)   hold, as well as it is globally if the 
conditions (5.2) hold. The disease free equilibrium point ܧଷ   exist under the conditions (3.2) and (3.2), it is locally asymptotically 
stable point if and only if conditions (4.11) and (4.12)   hold, as well as it is globally if the conditions (5.3) –(5.5) hold. The 
infected predator free equilibrium point ܧସ   exist under the conditions (3.10)-(3.12), it is locally asymptotically stable point if and 
only if conditions (4.16) and (4.18)-(4.20)   hold, as well as it is globally if the conditions (5.6)-(5.9) hold The infected pry free 
equilibrium point ܧହ   exist under the conditions (3.18) and (3.19), it is locally asymptotically stable point if and only if conditions 
(4.24) and (4.25) hold, as well as it is globally if the conditions (5.10)-(5.13) hold. The positive equilibrium point ܧ଺ of system 
(2.2) exist provided that the conditions (3.31)	ܽ݊݀	(3.34) are hold and the isocline 	݃ଵ(ݕ,ݔ) = 0 intersect the x-axis at the 
positive value namelyݔଵ∗. It islocally asymptotically stable point if and only if conditions (4.29)-(4.34) hold, in addition it is 
globally if the conditions (5.14)-(5.17) hold. 
 

To understand the effect of varying each parameter including harvest on the global dynamics of system (2.2) and to confirm our 
above analytical results, system (2.2) has been solved numerically and the following results are obtained: 
 

1. For the set of hypothetical parameters values given in		(૟.૚)	, system		(૛.૛)		approaches asymptotically to a globally 
asymptotically stable point ࡱ૟ = (	0.688	,0.164	,0.174	,0.491	)	. 

2. Varying the conversion rate parameter value and the half saturation parameter ଼ܿ	, ܿଽ, ܿଵଶ and ܿଷ respectively at each time 
keeping other parameters fixed as data given in (6.1) do not have any effect on the dynamical behavior of system 
(2.2)	and the solution of the system still approaches to positive equilibrium point		ܧ଺ = ,	∗ݔ	) y∗	, z∗	,ݓ∗	)	. 

3. Increasing the infection parameter ܿଵ > 0.37	and	ܿଵ଴ > 1.5 at each time keeping other parameters fixed as data given in 
(6.1) the solution of the system (2.2)	will approaches asymptotically to the vanishing equilibrium point. 	ܧ଺ =
,	∗ݔ	) y∗	, z∗	,ݓ∗	) 

4. Further, Increasing the maximum attack rate of susceptible predator for susceptible prey ,harvesting rate and death of 
infected predator rare due to disease  parameter ܿଶ > 1.45, 0.215 < ܿ଻	, ܿଵଷ ≥ 1.5	,	and ܿଵସ ≥ 0.89	 respectively at each 
time keeping other parameters fixed as data given in (6.1) the solution of the system 	(2.2)	will approaches 
asymptotically to the infected prey free equilibrium point ܧହ = ,෤ݔ) 0,  (෥ݓ,ݖ̃

5. Varying the conversion rate of the susceptible prey from susceptible predator and infection rate of prey,  ଼ܿ < 0.012 and 
ܿଵ < 0.1 keeping other parameters as data given in (6.1) , it is makes the solution of system (2.2) approaches 
asymptotically to the axial equilibrium point ܧଵ = (1,0, 0,0) 

6. Increasing the maximum attack rate of susceptible predator for infected prey, the maximum attack rate of infected 
predator for infected prey, death of infected prey rare due to disease 0.98 < ܿସ < 1.5	,0.59 < ܿହ < 1.5		,0.124 < ܿ଺ < 1  
respectively at each time keeping other parameters fixed as data given in (6.1) the solution of the system 	(2.2)	will 
approaches asymptotically to the infected prey free equilibrium point ܧହ = ,෤ݔ) 0,  (෥ݓ,ݖ̃

7. Finally, Varying the death rate parameter value of predator 	ܿଵଵ = 0.2 the solution of the system (2.2) approaches to the 
disease free equilibrium pointࡱ૜ = ,૙,̇࢞) , while 0.2	૙),ࢠ̇ < ܿଵଵ ≤ 0.31  causes extinction in the infected predator  and 
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the system will approach the  infected predator free equilibrium pointܧସ = ,ݔ̿) ,ധݕ ,ݖ̿ 0).  Now, increase 0.31 < ܿଵଵ  the 
solution of the system (2.2) approaches to the predator free equilibrium point. 
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