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INTRODUCTION 
 

The concept of sampling distribution set the ground rules for 
the game of Statistics. Most of what statisticians do is either 
finding "good" estimates for unknown parameter
hypotheses. The sampling distribution creates the following 
underlying logic for these two activities. 
 

Using a formula β* to produce an estimate of β can be 
conceptualized as the statistician shutting his or her eyes and 
obtaining an estimate of β by reaching blindly into the 
sampling distribution of β* to obtain a single number. Here β 
could be a parameter or a value to forecast. 
 

Because of this, choosing between β* and a competing formula 
β** comes down to the ambiguity that would we pre
produce the estimate of β by reaching blindly into the 
sampling distribution of β* or by reaching blindly into the 
sampling distribution of β**. 
 

Because of above, desirable properties of an estimator β* are 
defined in terms of its sampling distribution. For example, β* 
is unbiased if the mean of its sampling distribution equals the 
number β being estimated. This explains why statisticians 
spend so much algebraic energy figuring out sampling 
distribution properties, such as mean and variance.
 

The properties of the sampling distribution of an estimator β* 
depend on the process generating the data. So an estimator can 
be a good one in one context but a bad one in another. When 
we move from one textbook topic to another we are moving 
from one data generating process to another, necessitating a re
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                             A B S T R A C T  
 

 

This article offers some explanations for the phenomenon and examples for understanding 
of “Bootstrapping”. The purpose of this article is to defend the view expressed in 
introduction and prescribe some suggestions from an unexpected but useful source “the 
bootstrap” where other methods fail to yield required results. We begin by explaining the 
concept of sampling distribution. After exposing the bootstrap, some examples illustrate 
how bootstrap exercises can promote understanding of the sampling distribution concept 
and efficiently useful in predicting the results. 
 

 
 
 
 

The concept of sampling distribution set the ground rules for 
the game of Statistics. Most of what statisticians do is either 
finding "good" estimates for unknown parameters or testing of 
hypotheses. The sampling distribution creates the following 

Using a formula β* to produce an estimate of β can be 
conceptualized as the statistician shutting his or her eyes and 

ate of β by reaching blindly into the 
sampling distribution of β* to obtain a single number. Here β 

Because of this, choosing between β* and a competing formula 
β** comes down to the ambiguity that would we prefer to 
produce the estimate of β by reaching blindly into the 
sampling distribution of β* or by reaching blindly into the 

Because of above, desirable properties of an estimator β* are 
tion. For example, β* 

is unbiased if the mean of its sampling distribution equals the 
number β being estimated. This explains why statisticians 
spend so much algebraic energy figuring out sampling 
distribution properties, such as mean and variance. 

operties of the sampling distribution of an estimator β* 
depend on the process generating the data. So an estimator can 
be a good one in one context but a bad one in another. When 
we move from one textbook topic to another we are moving 

ating process to another, necessitating a re-

examination of the sampling distribution properties of familiar 
estimators and development of new estimators designed to 
have "better" sampling distribution properties. 
 

Test statistics have sampling distributi
hypotheses we carefully choose a test statistic which, if the 
null hypothesis is true, has a sampling distribution described 
by numbers we know. Many such test statistic sampling 
distributions are described by tables in the back of statis
text books. The explanation of how and why we accept or 
reject a hypothesis is built on the logic of the sampling 
distribution. If we understand sampling distribution, the rules 
of the game, we will understand the logic of hypothesis testing.
 

What Is Bootstrapping 
 

Only in simple cases theory in statistics deduce the properties 
of a statistic's sampling distribution. In most cases theory is 
forced to use asymptotic algebra, producing results that apply 
only when the sample size is very large. Although
cases these asymptotic results provide remarkably good 
approximations to sampling distributions associated with 
typical sample sizes, one can never be sure. Because of this, 
statisticians have turned to the computer to discover the 
sampling distribution properties of statistics in small samples, 
using Monte Carlo method. 
 

In the Monte Carlo method the computer is used for the data 
generation, creating several thousand typical samples, 
calculating for each sample the value of the statistic required 
and then using these thousands of values, characterize the 
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statistic's sampling distribution by estimating its mean, 
variance and mean square error or any other required property. 
In data generating process the computer needs to forecast 
errors from an error distribution, which in reality is unknown. 
For convenience, in most Monte Carlo studies errors are drawn 
from a normal distribution. But in many problems the reason 
we believe that the asymptotic results are not reliable in small 
samples, as we do not believe that the errors are distributed 
normally. In such cases traditional Monte Carlo methods do 
not produce effective results. To deal with this problem, we 
must find a way of drawing errors more representative of the 
unknown actual error distribution. Bootstrapping is a method 
for solution of this problem. 
 

Bootstrapping Versus Monte Carlo 
 

Bootstrapping is a variant of Monte Carlo in which the error 
distribution from which the computer draws errors is an 
artificial distribution with equal probability on all of the 
residuals from the initial estimation of the model under 
investigation. This is typically described as randomly drawing 
with replacement from the set of ordinary least squares 
residuals. In effect the actual, unknown distribution of errors is 
being approximated by this artificial distribution. This 
bootstrapping procedure has been shown to perform 
remarkably well. It produces estimates of sampling 
distributions of statistics that are surprisingly accurate and so 
has become increasingly popular in statistical analysis. 
In particular, “Bootstrapping” is used for two main purposes. 
 

Bootstrapping used in testing 
 

Suppose one is using an ‘F’ test to test some hypothesis, but 
because he fears that his problem is characterized by non-
normal errors he is worried that for his modest sample size the 
sampling distribution of F- statistic under the null hypothesis is 
not accurately characterized by the figures in the F- table . In 
particular one might fear that the 5 percent critical value found 
in this table may for his problem be more like a 25 percent 
critical value!  
 

By bootstrapping this F-statistic under the null hypothesis, he 
can create a description of the F-statistic's sampling 
distribution suitable to his problem. By using this distribution 
instead of the tabled F-distribution he can choose the critical 
value to ensure that the resulting type-I error is indeed 5 
percent.  
 

Bootstrapping for estimating Confidence Intervals:  
 

Suppose one is forecasting a variable and wish to produce a 
confidence interval for the forecast. The usual way of 
calculating such a forecast interval is, to find the standard error 
of the forecast, multiply it by a suitable critical value taken 
from the t - distribution and then add and subtract the result 
from his forecast. This procedure could be very inaccurate, 
however, for several reasons. One can also use a search 
procedure to develop some specifications, the variable being 
forecast may be a nonlinear function of parameters estimated 
via these specifications, and the errors may not be distributed 
normally. It is not known how to find the standard error of 
such a forecast, and even if it was, the forecast would surely 
not have a t - distribution, nor be symmetric. By bootstrapping 
this entire estimation procedure the actual sampling 
distribution of the forecast could be estimated, allowing an 
appropriate confidence interval to be produced. 
 

We here illustrate some examples to elucidate use of 
bootstrapping in various situations. 
 

Example 
 

Suppose we have 25 observations (say) on variables Y and X 
and assume that Y = a + bX + e, where the classical linear 
regression (CLR) model holds (but not the classical normal 
linear regression model, which implies that the errors are 
distributed normally). One can proceed with ordinary least 
squares and obtain estimates 0.50 and 2.25 of ‘a’ and ‘b’, with 
corresponding estimated variances 0.04 and 0.01 (say), saving 
the residuals in a residual vector ‘res’. One can develop a 
computer program in any language for the following 
algorithm. 
 

i. Draw 25 ‘e’ values randomly with replacement from the 
elements of ‘res’. 

ii. Compute 25 values of Y using:  
y=0.5 + 2.25*x + 1.043*e. 

iii. Regress ‘y’ on ‘x’, obtaining an estimate 


  of  β and 

its standard error ‘se’. 

iv. Compute t = {( 


  - β)2}/se and save it. 

v. Repeat from (i) to obtain 2000 values of‘t’. 
vi. Arrange these t - values in ascending order. 

vii. Print the 50th t - value t[50] and the 1950th t - value 
t[1950]. 

 

Then:  

a. Explain what this program is designed to do. 
b. The answer should be: This program is producing 2000 

values of‘t’, those can be used to estimate the sampling 
distribution, under the null hypothesis, β=2 of the t - 
statistic for testing β = 2.  

c. Suppose t[50] = -2.634 and t[1950] = 2.717 ,what 
conclusion would you draw? 

d. The answer should be: The t–value obtained from the 
actual data is 2.50 because it lies within the two-tailed 5 
percent critical values of -2.634 and 2.717, we fail to 
reject the null hypothesis at this significance level. 

 

Example 
 

Suppose we have 28 observations on ‘y’, ‘x’, and ‘z’ and let y 
= α + βx + γz + ε, where the CLR model holds. We run 
ordinary least squares and obtain estimates 1.0, 1.5 and 3.0 of 
α, β and γ saving the residuals in a vector ‘res’. We have to 
program a computer to do the following: 
 

i) Draw 28 values of ε randomly with replacement from 
the elements of ‘res’. 

ii) Compute 28 values of y using: y=1.0 + 1.5*x + 3.0*z + 
1.058* ε . 

iii) Regress ‘y’ on ‘x’ and ‘z’ obtaining an estimate 


 of 

‘β’ and ̂ of ‘γ’. 

iv) Compute: r = ̂ /


  and save it. 

v) Repeat from (i) to obtain 4000, values of ‘r’. 
vi) Compute and print the average (av) of the ‘r’ values and 

their variance (var). 
vii) Arrange these ‘r’ values in ascending order. 
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Then:  

i. An estimate of the bias of ̂ /


  as an estimate of γ /β is 

estimated by av – 2. 

ii. An estimate of the standard error of ̂ /


 is estimated by 

square root of ‘var’ . 
iii. Testing the null hypothesis that the bias = 0 is a t - 

statistic for testing the null hypothesis is the estimated 
bias divided by the square root of its estimated variance. 

d) A 90 percent confidence interval for γ /β is given by the 
interval between the 200th and the 3800th ‘r’ values, 
adjusted for any bias. 

 

Example 
 

Suppose that the CLR model applies to y = a + βx + e, except 
that the error variance is larger for the last half of the data than 
for the first half. Let the error be not distributed normally. In 
this case, Goldfeld-Quandt statistic will not have an F - 
distribution for the given sample size. Given some data, we 
can able to explain how to bootstrap the Goldfeld-Quandt 
statistic to test the null hypothesis that the error variances are 
the same. 
 

Example 
 

Suppose we have programmed a computer to do the following: 
 

i) Draw 25 ‘x’ values from a uniform distribution between 
4 and 44. 

ii) Set ctr = 0. 
iii) Draw 25 values from a standard normal distribution and 

multiply all the negative  values by 9 to create 25 ‘e’ 
values. 

iv) Compute 25 values of y as y=3 + 2*x + e. 
v) Regress ‘y’ on ‘x’, saving the intercept estimate as ‘int’, 

the slope estimate as ‘b’, the  standard error of ‘b’ as ‘se’ 
and the residuals as a vector ‘res’. 

vi) Compute t=b2/se and save it. 
vii) Compute 25 values of y as y= int + 2*x + 1.043*b*e, 

where b*e is drawn randomly   with  replacement from 
the elements of ‘res’. 

vii) Regress ‘y’ on ‘x’ and compute bt(1) = b2/se, where 
‘b’ is the slope coefficient estimate and ‘se’ is its 
standard error. 

viii) Repeat from (vii) to obtain 200 values of ‘bt’. 
ix) Arrange these ‘bt’ values in ascending order. 
x) Add one to ‘ctr’, if t is greater than the 190th ordered ‘bt’ 

value. 
xi) Repeat from (iii) to obtain 500 values of t. 
xii) Calculate the fraction of these t values. 

 
 
 
 
 
 
 
 
 
 
 
 

 

The above program is designed to compare the actual type-I 
error of a traditional one-sided t -test and its bootstrapped 
version. The context is a linear regression in which the error 
terms have come from an asymmetric distribution, a nominal 
significance level of 5 percent has been employed, the null 
hypothesis is that the slope= 2, and the alternative hypothesis 
is that the slope > 2. The tabled 5 percent critical value for the 
t - distribution with 23 degrees of freedom is 1.56.  
 

DISCUSSION AND CONCLUSIONS 
 

A sampling distribution reflects relative frequencies with 
which different values of a statistic would be obtained if 
different errors had been drawn. 
 

It is possible to have techniques for bootstrapping when the 
errors are not exchangeable. An example is heteroscedasticity 
problem associated with an explanatory variable, causing large 
(in absolute value) errors to be more likely to be attached to 
some observations than others. A very different bootstrap 
resampling procedure is used to deal with this, in which a 
bootstrapped sample is formed by drawing with replacement 
from the set of original observations (where each dependent 
variable value and its associated independent variables values 
is a single observation). For some applications the 
bootstrapped samples must be created in imaginative ways as 
well. 
 

The number of bootstrapped samples required varies from case 
to case. Efron [1] suggests that estimation of bias and variance 
requires only about 200 but estimation of confidence intervals, 
and thus use for hypothesis testing, requires about 2000. 
For bootstrapping a pivotal statistic would require 
bootstrapping a t - statistic (where the standard error is 

calculated using an asymptotic formula) for ̂ /


  (Example 

4.2). The confidence interval would be calculated by taking the 
bootstrap critical t - values and multiplying them by the 
bootstrapped estimated standard error. The main message of 
this article is that to learn the sampling distribution concept 
and that the way to do this is to provide sample examination 
questions that require them to demonstrate. An advantage of 
this is that bootstrapping is becoming common in applied 
statistics. 
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